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ABSTRACT
Polypharmacy, defined as the use of multiple drugs together, is
a standard treatment method, especially for severe and chronic
diseases. However, using multiple drugs together may cause inter-
actions between drugs. Drug-drug interaction (DDI) is the activity
that occurs when the impact of one drug changes when combined
with another. DDIs may obstruct, increase, or decrease the intended
effect of either drug or, in the worst-case scenario, create adverse
side effects. While it is critical to detect DDIs on time, it is time-
consuming and expensive to identify them in clinical trials due to
their short duration and many possible drug pairs to be consid-
ered for testing. As a result, computational methods are needed for
predicting DDIs. In this paper, we present a novel heterogeneous
graph attention model, HAN-DDI to predict drug-drug interactions.
We create a heterogeneous network of drugs with different biolog-
ical entities. Then, we develop a heterogeneous graph attention
network to learn DDIs using relations of drugs with other enti-
ties. It consists of an attention-based heterogeneous graph node
encoder for obtaining drug node representations and a decoder
for predicting drug-drug interactions. Further, we utilize compre-
hensive experiments to evaluate of our model and to compare it
with state-of-the-art models. Experimental results show that our
proposed method, HAN-DDI, outperforms the baselines significantly
and accurately predicts DDIs, even for new drugs.
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1 INTRODUCTION
Taking multiple drugs together, called a polypharmacy, has become
a highly successful method of treating diseases, especially for severe
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and chronic diseases. [12, 21]. On the other hand, polypharmacy
may cause substantial adverse drug reactions (ADR) owing to inter-
action between drugs [11]. Drug-drug interactions (DDIs) may alter
the activity of the drugs with obstructing, increasing, or decreasing
the intended effect of drug, and in the worst-case scenario, may
create adverse side effects [8]. To mitigate unintended pharmaco-
logical side-effects’ impact, it is critical to predict DDIs early and
effectively. However, it is difficult to identify all potential DDIs, es-
pecially for new drugs with clinical trials due to the performing on
a minimal number of patients in a short duration and many possible
drug pairs to be considered for testing. Thus, many computational
models are developed to detect DDIs automatically.

Most DDI prediction approaches integrate numerous data sources
for drug attributes such as similarity features ([23, 27]), adverse
or side effects ([15, 38]), and multi-task learning ([4]). These tech-
niques rely on the hypothesis that similar drugs have a similar
type of interaction. Meanwhile, other computational techniques
utilize popular embedding methods ([20, 25, 26]), which learn drug
representation and perform DDI prediction. Although the above-
mentioned approaches show excellent performance, they ignore
that DDI is represented as an independent data sample, and associ-
ated relationships are not taken into account.

Due to the widespread use of knowledge graphs (KG), there has
been an increase in study on relation inference and recommenda-
tion. Recent research has employed KG to predict DDI [16, 40]. To
extract drug features using different embedding techniques, they
both apply KG to machine learning models. They do learn node
latent embedding directly. However, these techniques are limited in
their ability to retrieve the detailed neighborhood. Recently, graph
neural networks have shown to be very effective for DDI predic-
tion [22, 38] through effectively capturing local neighborhood and
graph structure. These methods take interaction of drugs and other
biomedical entities into account to form an enhanced node repre-
sentation. However, they do not consider significance of different
type of interactions and treat each kind of interactions equally.

Recently, many studies have been using relationships between
drugs and other biological entities. A question might arise- how
do we model these complete, enriched data? To address this, net-
works, which are graphs encapsulating the intricate structure of
interactions between related entities can be used. Networks are
used in various areas, including social networks [2, 14], citation
networks [33], and biological networks [3, 34]. To represent various
entities and their disparate interactions, heterogeneous Information
Network (HIN)[31] is defined. It is used in a variety of applications
including DDI prediction [16, 34] and detecting opioid addicts from
social media [5].

In this paper, we present a novel heterogeneous graph attention
networks model for the DDI prediction problem. First, we extract
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extensive drug-centric information, comprising data on drugs, dif-
ferent biomedical entities, and their diverse and multi-relational
interactions, from DrugBank. Then, we model these data using a
Heterogeneous Information Network (HIN). Then, we construct
different meta-paths connecting different drugs in our HIN to define
similarities between drugs. Meta-paths provide a way to denote
how connected or relevant two drugs are, based on their interaction
with other entities like protein and disease.

Furthermore, we develop heterogeneous graph attention neural
network (HAN) model ([37]) for DDI prediction. HAN-DDI has an
encoder-decoder architecture. We construct a hierarchical attention
mechanism in the encoder that includes node-level and meta-path-
level attention to learn node representations from various meta-
paths. This model propagates information from local neighbors
using a meta-path. For each meta-path, we integrate node-level
attention to learn representations for nodes. We also use meta-
path-level attention to learn the importance of distinct meta-paths
to efficiently aggregate node representations from different meta-
paths. Afterward, the pair-wise representations of drugs are passed
through the decoder function to predict a binary score for each drug
pair that indicates whether two drugs interact. To the best of our
knowledge, this is the first method to solve DDI prediction using a
hierarchical attention mechanism, which successfully learns node
embedding from numerous meta-paths.

As the initial features of drugs to give as the input to our model
in addition to relational information, we extract comprehensive
features for drugs. Drugs are massive chemical compounds. While
numerous chemical substructures exist in a drug, only a few chemi-
cal substructures cause chemical reactions among drugs. Therefore,
we use the ESPF algorithm ([18]) for feature extraction that retrieves
frequent substructures from a drug’s chemical structure.

We conduct extensive experiments to compare our model with
the state-of-the-art models. HAN-DDI comprehensively outperforms
other state-of-the-art models by up to 19%. We also depict support-
ing evidence in the biomedical literature for our novel predictions,
indicating that HAN-DDI excels at predictions that are likely to be
true positive.

Our primary contributions are as follows:

• Drug-centric Interaction Integration on HIN: We con-
struct a Heterogeneous Information Network (HIN) with
taking into account drugs and other biomedical entities like
proteins, side effects, and chemical structures.

• Constructing NovelMeta-paths: We utilize different meta-
paths considering drugs’ interaction with other biomedical
entities.

• Heterogeneous Graph Encoder-Decoder: We introduce a
novel graph encoder-decoder framework for predicting drug-
drug interactions based on a heterogeneous graph attention
network.

• Extensive Experiments: We perform extensive experiment
to compare our model with the state-of-the-art models. We
also design experiments for new drugs, and experimental
results demonstrate that our model can predict drugs with
no known interactions.

The structure of this paper is outlined as follows. In this section,
we explain the DDI problem and its impact. In addition, we ex-
plore related works in Section 2. Section 3 describes how data from
various sources are integrated, creating a heterogeneous graph.
Moreover, we elaborate on the HAN-DDI method, consisting of an
encoder-decoder framework. Furthermore, we describe our experi-
ments and illustrate our results in Section 4. Finally, we conclude
in Section 5.

2 RELATEDWORKS
Previous DDI prediction research may be divided into similarity-
based and deep learning-based techniques.

2.1 Similarity-based Methods
To predict ADRs, pharmacological, topological, or meta-path simi-
larity based on statistical learning is traditionally calculated [17, 39].
Similarity-based approaches have been shown to be successful in
predicting drug-drug interactions (DDIs). These strategies are based
on the notion that similar drugs will interact with one another. Var-
ious research publications ([1, 7]) used several numbers and types
of similarity metrics to predict DDIs. Another research paper worth
mentioning is [34], which used many data sources to construct a
heterogeneous graph. Furthermore, they acknowledged that their
dataset was imbalanced and skewed and devised many experiments
to solve these drawbacks. Meanwhile, [3] used a hypergraph to
depict chemical structure-based similarity between drugs. In this
work, multiple drugs can share a hyper-edge if drugs share a simi-
lar chemical substructure. However, the majority of these methods
take into account fewer datasets and drug-centric interactions.

2.2 Deep Learning-based Methods
Recently, a growing number of research-based neural networks, es-
pecially graph neural networks, have addressed different problems,
including DDI prediction [6] and drug abuse detection [29]. Graph
neural network-based approaches construct knowledge graphs
based on drug-centric interactions. Afterward, they employ a graph
neural network to extract relations among drugs. Decagon [38] con-
structed a knowledge graph based on protein-protein interactions,
drug-drug interactions, and drug-protein interactions. Afterward,
they developed a graph convolutional network consisting of en-
coding, decoding, and model training phases for DDI prediction.
KGNN [22] used GNN to learn drugs and their embedding using
a knowledge graph and DDI. CASTER [13] recently developed
a dictionary learning framework for predicting DDIs given drug
chemical structures via SMILES string. HyGNN [28], a hypergraph
neural network, is composed of a novel attention-based hypergraph
edge encoder for representing drugs as hyperedges and a decoder
for predicting drug interactions. Although these techniques have
demonstrated excellent performance, one fact they ignore is that
they treat DDI as an independent data sample and do not take into
account their relationships in the knowledge graph. The main dis-
tinction between our study and the literature is that we attempt to
extract interactions between drugs and other biomedical entities
utilizing various meta-paths. Furthermore, we use the attention
mechanism to obtain the weight of drug nodes and the meta-paths.
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3 THE PROPOSED MODEL
Given two drugs 𝑑𝑖 and 𝑑 𝑗 , our goal is to predict whether these
two drugs interact or not. In this paper, we model our data as a
Heterogeneous Information Network (HIN) and create different
meta-paths connecting different drugs in our HIN. Then, we develop
a multi-layer heterogeneous graph attention network HAN-DDI,
a model including an encoder to produce features of drugs. The
encoder has a hierarchical attention structure: node-level attention
and meta-path-level attention. Figure 1 depicts the entire HAN-DDI
structure. To begin, we present a node-level attention method for
learning the weight of meta-path based neighbors and aggregating
them to obtain the meta-path-specific node embedding. Following
that, HAN-DDI may distinguish between meta-paths using meta-
path-level attention and obtain the ideal weighted combination of
meta-path-specific node embedding. Finally, HAN-DDI incorporates
a decoder that learns and predicts the interaction between drugs.

Our proposed model consists of the following steps:
(1) Heterogeneous Graph Construction
(2) Meta-path construction
(3) Feature Extraction
(4) DDI prediction with Heterogeneous graph attention network

• Encoder: Attention-based Drug representation learning
• Decoder: DDI learning

3.1 Heterogeneous Graph Construction
To predict DDIs, we follow the underlying hypothesis that similar
drugs interact with each other. To properly define drug similarities,
we consider interactions between drugs and other bio-molecular
entities. We aim to compute similarity between drugs based on
their interaction with other biomedical entities.

We consider drugs, proteins, side-effect as the entities and use
DrugBank data to build relationships between these entities. We
also extract the substructures from chemical structure of drugs and
define it as another entity and relation in the network. Detailes are
given below.

• I1: 𝑇 matrix represents the drug-target protein interaction
where each element 𝑡𝑖, 𝑗 states whether drug i targets protein
j.

• I2: 𝑆𝐸 matrix represents drug-side effect relation where each
element 𝑠𝑒𝑖, 𝑗 describes whether drug i causes side effect j.

• I3: 𝐻 matrix outlines drug-chemical substructure relation
where each element ℎ𝑖, 𝑗 refers to whether drug i have chem-
ical substructure j.

• I4: To represent protein-protein interaction (PPI) interac-
tion, we build the protein-interacts-protein matrix 𝑃 , where
each entry 𝑝𝑖, 𝑗 indicates whether or not protein pair i and j
interacts or not.

Table 1 summarizes the relations mentioned above and their
elements in the relation matrices. To integrate all these interactions
between these diverse entities, we create heterogeneous informa-
tion networks.

Definition 3.1 (Heterogeneous information network). [31] A het-
erogeneous information network (HIN) is defined as a graph G =
(V,E) with an entity type mapping 𝜙 : V → A and a relation type
mapping 𝜓 : 𝜖 → R, where V denotes the entity set and E is the

relation set, A denotes the entity type set and R is the relation type
set and the number of entity types |A| > 1 or the number of relation
type |R| > 1.

HIN offers the network structure of data associations and a high-
level abstraction of the categorical association. As stated previously,
we have four entity kinds (drug, protein, chemical structure, and
side effects) and four types of relationships among them for DDI
prediction.

3.2 Meta-path construction
After constructing the heterogeneous network, we create meta-
paths [32] to extract relations among drugs through other enti-
ties. For a heterogeneous graph, meta-paths are used to measure
the relationships and similarities between entities. Furthermore,
meta-paths are represented by a commuting matrix. Meta-path and
commuting matrix are defined below.

Definition 3.2 (Meta-path). [32] A meta-path 𝑃 is a path on the
network schema diagram 𝑇𝐺 = (𝐴, 𝑅), and is represented in the

shape of 𝐴1
𝑅1−−→ 𝐴2

𝑅2−−→ · · · 𝑅𝑙−−→ 𝐴𝐿+1, describing a composite rela-
tionship 𝑅 = 𝑅1 ◦ 𝑅2 ◦ · · · ◦ 𝑅 between entities 𝐴1 and 𝐴𝐿+1, where
◦ denotes composition operator association, and length of P is L.

Definition 3.3 (Commuting matrix). [32] Given a network 𝐺 , a
commuting matrix 𝑀𝑃 for a meta-path 𝑃 = (𝐴1𝐴2 · · ·𝐴𝐿+1) is de-
fined as 𝑀𝑃 = (𝐺𝐴1𝐴2𝐺𝐴2𝐴3 · · · 𝐺𝐴𝑙𝐴𝐿+1 ), where 𝐺𝐴𝑖𝐴 𝑗

is the ad-
jacency matrix between types 𝐴𝑖 and 𝐴 𝑗 . 𝑀𝑃 (𝑖, 𝑗) represents the
number of path instances between entity 𝑥𝑖 ∈ 𝐴1 and entity 𝑦𝑖 ∈
𝐴𝐿+1 under meta-path 𝑃 .

In our proposed model, we consider four different meta-paths,
as listed in Table 2, between drugs:

(1) DID-1: Drug - Protein - Drug
(2) DID-2: Drug - Protein - Protein - Drug
(3) DID-3: Drug - Chemical Sub-structure - Drug
(4) DID-4: Drug - Side Effect - Drug
We can enumerate a large number of meta-paths given a system

architecture with various sorts of entities and their interactions. In
our application, we design four valid meta-paths as listed in Table 2
for similarity measures over drugs based on the obtained data and
the four distinct types of relationships mentioned in Table 1. Dif-
ferent meta-paths assess the similarities between two drugs from
various perspectives. The DID-1 meta-path calculates the similarity
of two drugs based on their common target proteins. If two drugs
have same target protein, there will be path between them coming
though that protein. Further, DID-2 meta-path calculates the sim-
ilarity of two drugs based on their hierarchically common target
proteins. For this meta-path, we take both drug-protein and protein-
protein interactions into account. If there is a protein that interacts
with other drug’s target protein, then there will be path between
drugs connected through their target proteins. Moreover, DID-3
connect two drugs based on their shared chemical substructures,
which indicates how structurally similar the two drugs are. Chem-
ical substructures of drugs are represented as SMILES strings. A
string of a drug is converted into MACCS keys, a binary fingerprint
consisting of 167 keys. Every bit position corresponds to a unique
chemical substructure, indicating whether or not it is present. We
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Figure 1: System Architecture of HAN-DDI

Table 1: Description of Each Matrix And Its Element

Matrix Element Description

T 𝑡𝑖, 𝑗 if drug 𝑖 targets protein 𝑗 , then 𝑡𝑖, 𝑗 = 1; otherwise, 𝑡𝑖, 𝑗=0
C 𝑐𝑖, 𝑗 if drug 𝑖 causes side-effect 𝑗 , then 𝑐𝑖, 𝑗 = 1;otherwise, 𝑐𝑖, 𝑗=0
H ℎ𝑖, 𝑗 if drug 𝑖 possesses chemical sub-structure 𝑗 , then ℎ𝑖, 𝑗 = 1;otherwise, ℎ𝑖, 𝑗=0
P 𝑝𝑖, 𝑗 if protein pair 𝑖 and 𝑗 interacts, then 𝑝𝑖, 𝑗 = 1;otherwise, 𝑝𝑖, 𝑗=0

Table 2: The description of each meta-path

DID Meta-path Matrix Description of each element in Matrix

1 drug
𝑇−→ protein

𝑇𝑇

−−→ drug TT𝑇 number of common target proteins drug 𝑖 and 𝑗 have

2 drug
𝑇−→ protein

𝑃−→ protein
𝑇𝑇

−−→ drug TPT𝑇 number of common hierarchical protein interactions drug 𝑖 and 𝑗 have

2 drug
𝐻−→ chemical sub-structure

𝐻𝑇

−−−→ drug HH𝑇 number of common chemical substructures shared by drugs 𝑖 and 𝑗

3 drug
𝐶−→ side-effect

𝐶𝑇

−−→ drug CC𝑇 number of common side-effects caused by drugs 𝑖 and 𝑗

consider each unique chemical substructure as a unique node in the
graph. If two drugs share same chemical substructure, there will
be path between them coming though that substructure. Last but
not least, DID-4 weighs the relatedness of two drugs based on the
common side effects they cause. If two drugs case same side-effect,
there will be path between them coming though that side-effect.
As a result, HIN can naturally provide us different similarities with
different meta-path-based semantics.

A meta-path between two drugs can be created using relation
matrix matrix defined above. For example, the DID-1 meta-path

between two drugs can be created as drug
𝑡𝑎𝑟𝑔𝑒𝑡
−−−−−→ protein

𝑡𝑎𝑟𝑔𝑒𝑡𝑇

−−−−−−−→
drug. The commuting matrix for this meta-path is computed by 𝑇 *
𝑃 *𝑇𝑇 , where 𝑃 is the adjacency matrix indicating protein-protein
interactions, 𝑇 is the adjacency matrix between drugs and target
proteins, and 𝑇𝑇 is the transpose of 𝑇 .

Now, to cope with arbitrary graph-structured data, graph neural
network models has been developed. However, they are all intended

Table 3: Notations and Explanations of HAN-DDI

Explanation Notation

Meta-path 𝜈

Initial node feature h
Type-specific transformation matrix M𝜈

Projected node feature h
′

Importance of meta-path based node pair (i,j) e𝜈
𝑖, 𝑗

Weight of meta-path based node pair (i,j) 𝛼𝜈
𝑖, 𝑗

Meta-path based neighbors N𝜈
Semantic-specific node embedding z𝜈
Semantic-level attention vector q
Importance of meta-path 𝜈 w𝜈
Weight of meta-path 𝜈 𝛽𝜈

The final embedding Z

for homogeneous networks. Because meta-paths and meta-path-
based neighbors are two key features in a heterogeneous graph, we
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will now describe HAN-DDI, intended for heterogeneous graph data
that may utilize the subtle differences between nodes and meta-
paths. Table 3 summarizes the notations we will use throughout
the article.

3.3 Feature Extraction
One of its biggest strengths of graph neural networks (GNNs) is
including node features into the learning process. In a general
GNN architecture, initialized node features are used to generate
enriched and effective node embeddings through a message passing
mechanism. Therefore, we need featured of nodes as drugs, proteins
and side effects to give to the GNN model in the next step. Here,
we describe how we construct features for drugs.

We use the chemical substructures of drugs to create features
of them. They are represented as SMILES strings. We employ the
ESPF algorithm to extract significant chemical substructures from
drugs’ SMILES strings and use them to create drug features.

ESPF is an effective technique for decomposing sequential struc-
tures into interpretable functional groups. A few substructures are
responsible for chemical reactions in drugs. Thus the algorithm
selects the most common substructures as significant. ESPF de-
composes a SMILES string 𝑆 into a set of different sized frequent
substructures, beginning with the set of all atoms and bonds. If the
frequency of each substructure, 𝑓𝑖 in 𝑆 , exceeds the predetermined
threshold, then it is added to a list of substructures as a vocabulary
𝐹 = 𝑓1 ....𝑓𝑛 . This process is repeated until there are no pairs with
a frequency more significant than the threshold or the list size
exceeds the maximum size.

3.4 Heterogeneous Graph Attention Network
We utilize the Heterogeneous graph attention Network (HAN-DDI)
for DDI prediction by following the idea HAN [37]. HAN-DDI
includes an encoder, which generates the embedding of drugs, and
a decoder that uses the embedding of drugs from the encoder to
predict whether a drug pair interact or not.

3.4.1 Encoder: Drug representation learning. The encoder layer
uses weighted neighborhood aggregation to build a node embed-
ding. First, we define node-level attention to learn the weight of
meta-path-based neighbors and aggregate them to get the meta-
path-specific node embedding. Then we define the meta-path level
attention to learn the importance of meta paths and their weights
to combine multiple meta-path-specific drug embeddings into one
drug embedding.

Node Level Attention Meta-paths are used by our model to
propagate information from local neighbors. Now, all meta-path-
based neighbors might not affect a target node the same way. Each
node’s meta-path-based neighbors play a varied role and so have a
different impact on learning the node’s embedding. We incorporate
node-level attention for each meta-path to learn node represen-
tations and then combine the representations of these significant
neighbors to produce a final node embedding.

Due to the fact that nodes are of different types, various types
of nodes have diverse feature spaces. As a result, we create the
type-specific transformation matrix𝑀𝑖 for each kind of node (e.g.,
node of type 𝜈𝑖 ) to project the features of various types of nodes
into the same feature space. The projection procedure is as follows:

ℎ
′
𝑖 = 𝑀𝜈𝑖 ◦ ℎ𝑖 (1)

Here, ℎ and ℎ′ represent the original and projected features of
nodes 𝑖 and ◦ denotes inner product among two matrices.

Given a node pair (𝑖, 𝑗) connected by a meta-path 𝜈 , the node-
level attention 𝑒𝜈

𝑖 𝑗
can determine how significant node 𝑗 will be for

node 𝑖 . The significance of the meta-path-based node pair (𝑖, 𝑗) can
be expressed as follows:

𝑒𝜈𝑖 𝑗 = 𝑎𝑡𝑡𝑛𝑜𝑑𝑒 (ℎ
′
𝑖 , ℎ

′;
𝑗
𝜈) (2)

𝐴𝑡𝑡𝑛𝑜𝑑𝑒 signifies the deep neural network that conducts node-
level attention. Given a meta-path, 𝐴𝑡𝑡𝑛𝑜𝑑𝑒 is shared by all meta-
path-based node pairings. Using masked attention, we infuse struc-
tural information into the model where we compute 𝑒𝜈

𝑖 𝑗
for nodes

j ∈N𝜈
𝑖
, where 𝑁 𝜈

𝑖
indicates the meta-path-based neighbors of the

node 𝑖 . (include itself). Furthermore, we normalize the weights for
all meta-path-based neighbors after collecting the weights to derive
the attention coefficient 𝛼𝑖 𝑗 using a Softmax function.

𝛼𝜈𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 𝑗 (𝑒𝜈𝑖 𝑗 ) (3)

Then, in the following (𝑖 + 1)-layer, the meta-path-based embed-
ding of node 𝑖 may be substantially aggregated by the neighbor’s
embeddings at 𝑖-layer with the relevant attention coefficients as
follows:

𝑧𝜈𝑖 = 𝛿 (
∑︁

𝑗 ∈𝑁 𝜈 (𝑖)
(𝛼𝜈𝑖 𝑗 ◦ ℎ

′
𝑗 )) (4)

where 𝑧𝜈
𝑖
is the meta-path 𝜈 learnt embedding of node 𝑖 and 𝛿 is

a non-linear activation function,i.e., RELU. Multi-head attention is
used to make the learning process of self-attention more resilient.
Specifically, K attention mechanisms are utilized individually to
accomplish the feature transformation stated by Eq. 4, and then the
modified features are concatenated (symbolized as | |), resulting in
the output feature representation as a vector given below.

𝑧𝜈𝑖 = | |𝐾
𝑘=1𝛿 (

∑︁
𝑗 ∈𝑁 𝜈 (𝑖)

(𝛼𝜈𝑖 𝑗 ◦ ℎ
′
𝑗 )) (5)

This enables the model to dynamically apply greater aggregate
weights to nearby nodes more relevant to the DDI prediction task.
As a result, the embedding of the nodes may be aggregated based
on the dynamic weight. Because of these properties, our technique
is very effective for representation learning.

Meta-path Level Attention In various networks, each node
(i.e., drug) may have a variety of meta-path information. We use a
meta-path-level attention method to combine several meta-path-
specific representations for each node. We learn the weight of each
meta-path 𝜈 based on the following equation:

𝑤𝜈 =
∑︁
𝑖∈𝑉

𝑞𝑇 𝑡𝑎𝑛ℎ(𝑊 ◦ 𝑧𝜈𝑖 + 𝑏) (6)

where𝑊 is the weight matrix, 𝑏 denotes the bias vector, and 𝑞
denotes the meta-path-level attention vector. Finally, we use the
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softmax function to normalize the attention scores for a meta-path
𝜈 as in Equation 7.

𝛽𝜈 =
𝑒𝑥𝑝 (𝑤𝜈 )∑𝑇
𝑡=1𝑤

𝑡
(7)

where 𝑇 is the number of meta-paths. The final representation for
each node 𝑖 is then obtained by aggregating the meta-path-specific
representations as follows:

𝑧𝑖 =

𝑇∑︁
𝑡=1

𝛽𝑡𝑧𝜈𝑖 (8)

3.4.2 Decoder: DDI learning. Our objective is to learnwhether drug
pairs interact using the representation of drugs obtained from the
encoder. Decoder, in particular, assigns a score to drug pair (𝑣𝑖 ,𝑣 𝑗 )
expressing how probable it is that drug 𝑣𝑖 and 𝑣 𝑗 are interacting.
We use the dot predictor function as a decoder:

After performing an element-wise dot product between the cor-
responding drug’s features, we obtain the scalar score for each
edge.

𝛾 (𝑧𝑥 , 𝑧𝑦) = 𝑧𝑥 · 𝑧𝑦 . (9)

Following that, we put the decoder output into a sigmoid func-
tion.𝑦𝑥,𝑦 = 𝜎 (𝛾 (𝑧𝑥 , 𝑧𝑦)) that generates a prediction score, 𝑌 ′, rang-
ing from 0 to 1. A score close to 1 indicates that there is a high
likelihood of interaction between two drugs, whereas a score close
to 0 indicated that interaction is less likely.

3.4.3 Model Training. We train our entire encoder-decoder archi-
tecture as a binary classification problem by minimizing a binary
cross-entropy loss function specified as

𝐿 = −
𝑁∑︁
𝑖=1

𝑌𝑖 log𝑌
′
𝑖 + (1 − 𝑌𝑖 ) log(1 − 𝑌

′
𝑖 ) (10)

where 𝑁 is the total number of samples, 𝑌𝑖 is the actual label and
𝑌

′
𝑖
is the predicted score.

4 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our proposed model,
HAN-DDI for DDI prediction with extensive experiments and com-
pare the results with the state-of-art baseline models using several
accuracy metrics. The model used to predict the DDIs of existing
drugs may not be as effective as the model used to predict the
DDIs of new drugs. Therefore, we assess our model’s performance
for new and existing drugs. First, we describe how we collect our
data, then we explain our experiments, and finally, we analyze our
results.

4.1 Data Collection
We create the multi-type DDI dataset by gathering DDI items from
DrugBank. We choose 513 approved drugs and obtain their chemi-
cal structures, side effects, and drug binding proteins. We obtain
11,845 interactions among 513 drugs. Moreover, we extract 413 PPI
interactions from BioGRID. Table 4 summarizes the fundamental
statistics of the dataset used.

Table 4: Statistics of Dataset

Nodes/Edges Number of nodes

Drug 513
Protein 290

Side Effect 527
DDI 11845
DPI 514

Drug-Side Effect 13674
PPI 413

Table 5: Hyper-parameter Settings

Learning rate 0.005
Number of heads 8
Hidden units 8
Dropout 0.6

Weight decay 0.001
Number of epochs 200

Patience 100

4.2 Parameters Used
We employ an end-to-end optimization method for HAN-DDI, simul-
taneously optimizing all trainable parameters and propagating loss
function gradients via both encoder and decoder for implementing
DDI prediction. To optimize the model, we use the Adam optimizer
with a learning rate of 0.005 and a dropout rate of 0.6 for a maximum
of 20 epochs (training iterations). Moreover, the number of heads
and hidden units used are 8 and 16, respectively. The parameters
used in this model are outlined in Table 5.

4.3 Baseline methods
We compare our method with the following state-of-the-art meth-
ods. For the model that generate drug node embedding, we apply
concatenation and use the concatenated embedding as the feature
of drug pairings. Lastly, we feed concatenated embedding to a ma-
chine learning classifier. Here we apply different ML models and
select the decision tree classifier to further experiments. Detail of
the baselines are summarized bellow based on their types.

• Graph Embedding on DDI: Graph embedding models gener-
ates the representation of nodes in a homogeneous graphs
based on neighborhood information. We use DeepWalk [24]
and node2vec [9] as two main approaches for graph embed-
ding based on a random walk. A low-dimensional feature
representation of drug nodes is created these models on the
DDI networks, which only include drug drug interaction
information.

• Graph Neural Network on DDI: We use GNN architectures
on DDI graphs to learning representation of drugs. We se-
lect three common GNN-based methods: GCN[19], GAT[35],
and GraphSAGE [10]. These GNN models are obtained from
DGL1.

1https://docs.dgl.ai/
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• Graph Neural Network on Heterogeneous Graph: We use com-
mon GNN architectures on our heterogeneous graphs to
learning representation of drugs. We use same 3 GNN mod-
els, GCN, GAT and GraphSage, to learn node embedding.

• Graph Neural Network on Homogeneous Graphs: We con-
struct various homogeneous graphs consisting of drug nodes,
where edges among drug nodes are constructed based on
their relation to other entities as if they share target proteins,
cause side effects, or possess similar chemical substructures.
We have 3 different graphs as described below-
– HG1: Node type: Drugs; Edge: Drug Nodes sharing same
the target proteins

– HG2: Node type: Drugs; Edge: Drug Nodes causing the
same side effects

– HG3: Node type: Drugs; Edge: Drug Nodes possessing the
same chemical substructures

To learn drug node embedding, we apply GCN to these ho-
mogeneous graphs.

• ML Classifier on Drug Functional Representation (FR): Prin-
cipal Component Analysis (PCA)[30] is a dimensionality-
reduction approach that is commonly used to reduce the
dimensionality of huge data sets. This method generates a
feature vector for each drug based on the PCA representa-
tion of the drug-target protein interaction matrix, the PCA
representation of the drug-chemical substructure possession
matrix, and the PCA representation of individual drug side
effects.

• Heterogeneous Graph-Based Methods: We use Decagon [38]
model for this baseline. This graph convolution network
model was created to predict multi-relational links in hetero-
geneous networks. End-to-end learning is achieved in this
model to produce drug embedding using graph convolution
and to predict, DDIs using a decoder.

4.4 Comparison with baselines
We perform detailed experiments on our models and several state-
of-the-art models for existing and new drugs. To predict new drugs,
we partition our dataset so that 20% of drugs do not exist in the
training set and only appear in the testing set. Instead of concealing
just 20% of drug-drug interactions [7, 36], 20% of the drugs are
selected and all of their DDIs are hidden from the training set. This
selected 20% of drugs considered as new drugs.

Experimental results for existing and new drugs are shown in Ta-
bles 6 and 7. In prediction for existing and new drugs, HAN-DDI com-
prehensively surpasses other baselines. For existing drugs, while
we get scores are 95.18%, 96.77%, 93.65%, and 82.17%, respectively,
Decagon from baseline with highest score get 89.92%, 88.88%, 90.12%
and 92.52% for for F-1 score, Recall, Precision, and AUROC, respec-
tively. Similarly, for new drugs, while we get scores are 82.87%,
84.19%, 83.75%, and 71.48%, GCN on Heterogeneous graph from
baseline with highest score get 77.40%, 79.92%, 75.63% and 78.34%
for for F-1 score, Recall, Precision, and AUROC, respectively.

For further analysis on existing drugs, Node2Vec from graph em-
bedding models performs the best from graph embedding models
on DDI graph. GCN provides the best results for GNN models on
DDI and heterogeneous graphs. Applying GCN on heterogeneous

graphs (HG) produces better results than DDI since more nodes
and edges information are considered on HG. In the case of ho-
mogeneous graphs (HG), HG3 (homogeneous graph where edges
are formed in case drug nodes share similar chemical substruc-
tures) produces better accuracy results than other HG. It signifies
that chemical substructures are vital in representing drug node
embedding and characterizing DDIs. In addition, HG1 (homoge-
neous graph where edges are formed in case drug nodes share same
target proteins) generates better results than HG2 which shows
that target protein is more important tan side effects for DDI pre-
diction. On the other hand, the best-performing model among all
baselines, Decagon, earns an F1 score of 89.92%. However, in some
cases, HAN-DDI outperforms baseline methods by 19% performance
gain.

For new drugs, we could not perform experiments for Decagon
since it operates in a transductive manner, where the model is famil-
iar with all of the data. However, Node2Vec from graph embedding
models outperforms DeepWalk. While GCN produces the best re-
sults for GNN models on DDI graphs, it is worse than GCN on
heterogeneous graph because the graph considers more diverse en-
tity and relational information than DDI graph. Moreover, GCN on
heterogeneous graph performs the best across the baseline models.
In the case of homogeneous graph, similar to existing drugs, HG3
exceeds other homogeneous graph variants in evaluation metrics.

As summary, in most circumstances, HAN-DDI stays superior
to all baseline methods for existing and new drugs and, in some
cases, outperforms baseline approaches by 17%. According to the
overall performance, HAN-DDI is either the best or performs close
to the best model with respect to different evaluation measures.
Furthermore, we investigate whether and under what conditions
HAN-DDI outperforms all baseline approaches. Meanwhile, Decagon
is widely used as a baseline for any DDI prediction task. We will
analyze HAN-DDI method with that of Decagon’s. First, the reason
behind the outstanding performance achieved by DECAGON is
its ability to learn drug representations in a transductive manner.
Transductive learning algorithms have previously seen all of the
data, including the training and testing datasets. However, since
HAN-DDI can predict both existing and new drugs, it demonstrates
HAN-DDI’s ability to work in both a transductive and inductive
manner. Secondly, Decagon is built on a heterogeneous graph con-
taining different types of nodes and edges. In the encoder part, they
maintain a weight matrix for nodes only. HAN-DDI incorporates
both node-level and meta-path-level attention, resulting in effective
drug embedding. To our knowledge, this is the first work on DDI
prediction, which considers both node-level and meta-path-level
attention. All these aspects enable HAN-DDI to manifest superior
performance compared to any baseline methods.

Furthermore, to just compare the model with respect to its type,
we choose the best-performing method from each baseline model,
which is Node2Vec from graph embedding, HG3 from homogeneous
graphs, GCN from GNN on DDI, GCN from GNN on Heterogeneous
Graph and Concatenated Drug Features from ML on Functional
Representation. Figure 2 represent these results. The figure shows
that HAN-DDI is the best-performing model. It is worth noting that,
based on our findings, all GNN-based models, including HAN-DDI
and baselines, generates magnificent results. Because of its capacity
to analyze graph structure data, Graph Neural Network (GNN) has
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Table 6: Performance comparisons of HAN-DDI with baseline models for existing drugs

Model Method F1 RECALL PRECISION AUROC

GAT 84.72 85.07 84.36 84.65
GCN 85.02 86.29 83.78 84.79

GNN on DDI graph GraphSAGE 84.18 85.5 82.9 83.93
Node2Vec 79.63 78.35 80.95 88.73

GE on DDI graph DeepWalk 78.8 78.27 79.44 88.64
GAT 85.68 86.28 85.99 86.06
GCN 88.28 89.01 85.49 89.68

GNN on Heterogeneous graph GraphSAGE 87.79 88.31 86.94 85.59
HG1 85.35 86.48 84.24 85.15
HG2 84.67 87.04 82.43 84.24

Homogeneous Graphs HG3 86.01 84.45 87.63 86.26
ML Classifier on drugs’ FR Concatenated Drug Features 86.19 87.58 84.55 81.23

Decagon 89.92 88.88 90.12 92.52
Heterogeneous Graph-based methods HAN-DDI 95.18 96.77 93.65 82.17

Table 7: Performance comparisons of HAN-DDI with baseline models for new drugs

Model Method F1 RECALL PRECISION AUROC

GAT 72.55 74.07 73.15 72.48
GraphSAGE 70.88 74.61 72.93 73.18

GNN on DDI graph GCN 72.39 75.54 73.22 74.68
DeepWalk 68.15 68.47 70.37 68.59

GE on DDI graph Node2Vec 68.84 67.41 69.72 66.18
GAT 75.33 76.42 75.29 76.92

GraphSAGE 76.21 75.48 75.08 74.12
GNN on Heterogeneous graph GCN 77.40 79.92 75.63 78.34

HG1 75.16 74.23 75.67 76.08
HG2 74.88 76.52 73.77 75.49

Homogeneous Graphs HG3 76.92 75.58 76.14 75.80
ML Classifier on drugs’ FR Concatenated Drug Features 74.29 75.86 72.94 72.49

Heterogeneous Graph-based methods HAN-DDI 82.87 84.19 83.75 71.48

lately gained a lot of interest. It is an effective tool for analyzing
graph data. The capability of GNN to represent the interactions
between graph nodes is a milestone in graph analysis research.
Moreover, message passing between graph nodes allows GNNs to
capture graph dependence. Heterogeneous graph Attention net-
work is a variant of GNN. In HAN-DDI, we incorporate a hetero-
geneous graph attention network-based encoder. It incorporates
both node-level and meta-path-level attention, enabling us to learn
the weight of each drug and meta-paths. Since this model allows
us to generate enriched drug embedding through node-level and
meta-path-level attention, it produces superior accuracy results
compared to GNN-based models. This model is very efficient and
may be utilized well for different machine learning tasks including
node classification and link prediction.

4.5 Case Study: Prediction and Validation of
Novel DDI Predictions

Our goal is to assess the accuracy of HAN—DDI regarding DDI
prediction with real DDI instance. We compare our DDI predictions
with DrugBank labeled data. We generate different drug pairs and
then predict a score these drug pairs. For the top rank pairs that are

Table 8: Novel DDI Predictions and Their Validation

Drug1 Drug2 Predicted Score DrugBank Label

Quinolones Macrolides 0.996 1
Phenobarbital Rifampin 0.972 1
Sildenafil Cimetidine 0.958 1

Carbamazepine Cimetidine 0.932 1
Quinolones Citalopram 0.91 1

likely to cause DDIs, we search DrugBank to see if our prediction
can be found as DDI in Drugbank.

Table 8 displays HAN-DDI’s prediction score and the DrugBank’s
labeled data for corresponding drug pairs. We exhibit that our top 5
DDI predictions can be found in DrugBank. Therefore, experimental
results show that our model can accurately identify drug pairs likely
to cause DDI. For example, HAN-DDI predicts that simultaneous use
of Cimatedine and Carbamazepine can cause DDI. This experiment
illustrates HAN-DDI’s ability to predict novel DDI predictions.
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Figure 2: Performance Comparison of Models for a) Existing and b) New Drugs

Figure 3: Performance Comparison of HAN-DDI and its vari-
ants

4.6 Detailed Analysis On Node-level and
Meta-path-level Attention

Our HAN-DDI model incorporates two types of attention: node-
level attention and meta-path-level attention. These two levels of
attention aim to understand the attention of meta-path-specific
neighbors and meta-path, respectively. In this section, we run an
experiment to assess their influence on overall performance and
develop the following HAN-DDI variants:

• HAN-DDI-MP:We usemeta-path-level attention acquired from
HAN-DDI. A random matrix is used for node attention rather
than the node-level attention matrix.

• HAN-DDI-N:We use node-level attention generated by HAN-DDI.
Formeta-path-level attention, we assign equal weight to each
meta-paths.

For HAN-DDI-MP, the average F1-score, Recall, Precision, and
AUROC scores are 93.65%, 94.18%, 90.72%, and 80.88%, respectively,
for existing drugs. For HAN-DDI-N, our average F1-score, Recall,
Precision, and AUROC scores are 92.87%, 93.19%, 89.75%, and 78.48%,
respectively.

Performance analysis of HAN-DDI-MP and HAN-DDI-N is depicted
in Figure 3, which indicates that HAN-DDI outperforms HAN-DDI-MP
and HAN-DDI-N. It refers to the fact that node-level and meta-path-
level attention are effective in retrieving various meta-path in-
formation of nodes in different meta-paths. However, meta-path-
level attention is more influential than node-level attention since
HAN-DDI-N performs worse than HAN-DDI-MP.

5 CONCLUSION
In this paper, we present HAN-DDI, a novel graph encoder-decoder
based on heterogeneous graph neural networks for predicting DDIs.
We integrated a two-level attention method, i.e., node-level and
meta-path-level attention, that can efficiently determine the impor-
tance of meta-path-specific neighbors and meta-paths to exploit
various meta-path information of nodes from heterogeneous net-
works fully. Extensive experimental results show that the suggested
HAN-DDI model is dependable and promising in predicting DDIs.
Apart from generating outstanding accuracy results, we can show
that our model can accurately bring out the drug pairs likely to
cause DDI by comparing our prediction with real-world evidence.
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Our approach can be used to solve more complex Bioinformatics
problems such as polypharmacy-side effect prediction.
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