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Abstract—Modeling the interactions between drugs, targets,
and diseases has significant implications for drug discovery,
precision medicine and personalized treatments. Current com-
putational approaches consider pairwise interaction, including
drug-target or drug-disease interaction individually. On the other
hand, within human metabolic systems, the interaction of drugs
with protein targets in cells influences target activities. Moving
beyond binary relationships and exploring tighter relationships
together as triple is essential to understanding drugs’ mechanism
of action (MoAs). Moreover, considering the heterogeneity of
drugs, targets, and diseases, along with their distinct char-
acteristics, it is critical to model these complex interactions
appropriately. To address these challenges, we develop a novel
Heterogeneous Graph Triplet Attention Network (HeTAN) by
modeling the interconnectedness of all entities in a heterogeneous
graph. HeTAN introduces a novel triplet message passing and
triplet-wise attention mechanism within this heterogeneous graph
structure. In contrast to focusing only on pairwise attention
as the importance of an entity for the other, we define triplet
attention to model the importance of pairs for the other in
the drug-target-disease triplet prediction problem. We perform
extensive experiments on real-world datasets and our results
show that HeTAN outperforms several baselines, demonstrating
its superior performance in uncovering novel drug-target-disease
relationships.

Index Terms—Drug Discovery, Heterogeneous Graph Neu-
ral Network, Graph Neural Network, Representation Learning,
Graph Attention, Triplet Prediction

I. INTRODUCTION

Understanding drugs’ mechanism of action (MoA) is crucial
for drug repurposing, a promising approach to accelerating
drug discovery and offering avenues for personalized medicine
and targeted therapies. However, traditional drug discovery is
time-consuming and expensive [1]. To address this challenge,
computational methods have emerged as invaluable tools for
leveraging large-scale chemical and genomic data [2].

Recent machine learning advancements have enhanced the
study of drugs’ MoAs through various learning tasks like
drug behavior analysis, target activity evaluation, and disease

modeling. [3]. Among these tasks, predicting the relations
of drugs with other entities, such as drug-disease and drug-
target prediction, have gained significant attention [4], [5].
While existing methods have made progress in predicting the
relations of drugs with other entities, they often treat these
tasks as isolated tasks, leading to limitations in capturing the
interconnected nature of drugs with other entities. Crucially, a
drug’s therapeutic effect hinges on its interplay with biological
targets within complex pathways and the overall metabolic
system [1]. Drugs interact with protein targets in cells to
modulate target activities, altering biological pathways to treat
diseases. This activity integrates higher-order relationships
among multiple entities. Therefore, a more comprehensive
triple relationship involving drugs, targets, and diseases must
be considered to capture the interplay between these entities.

Tensor factorization has emerged as a popular approach
for drug-target-disease triplet prediction problems. They infer
missing entries in drug-target-disease tensors via extracting
latent structures from high-dimensional data [6]. NeurTN [7]
combines tensor algebra and deep neural networks to learn
the intrinsic relationships among drugs, targets, and diseases.
However, traditional tensor models like Canonical Polyadic
(CP) decomposition and Tucker decomposition suffer from
issues, including linearity and data sparsity. Nonlinear tensor
factorization methods have shown promise in capturing the
complexities of the data, but they often rely on prior Gaussian
processes that are challenging to estimate [8]. Moreover,
incorporating auxiliary information into tensor models requires
tedious feature engineering, making it challenging to han-
dle large-scale healthcare data [9]. Furthermore, while many
graph-based machine-learning models are common for drug-
related problems, the tensor model does not utilize graph
machine-learning models to predict new triplets.

Heterogeneous graphs, also called Heterogeneous Informa-
tion Networks (HIN) [10], provide a robust framework for
representing diverse entities and interactions in drug discovery.



In these graphs, nodes represent entities like drugs, proteins,
pathways, chemical substructures, ATC codes, and diseases,
while edges capture interactions between them. While many
models are developed to represent the relationship between
drug, target, and disease, they focus on predicting pairwise
relations between drug and other entities such as drug-drug,
drug-disease and drug-target [11]–[15]. These methods base
their predictions on established drug-drug similarity, target-
target similarity as well as known drug-target associations.
However, there is no HIN-based triplet prediction model.

To address these limitations and model the complex inter-
actions between drugs, targets, and diseases more effectively,
we propose a novel Heterogeneous Graph Triplet Attention
Network (HeTAN). HeTAN leverages the power of heteroge-
neous graphs, representing diverse entities and their interac-
tions, and employs a novel triplet attention mechanism to
capture higher-order interactions within the drug-target-disease
triplets. We capture higher-order interactions between drug,
target, and disease through a triplet-wise attention mechanism.
This gives us a more comprehensive understanding of drug
MoAs and can accelerate drug repurposing for personalized
medicine. While it is defined for drugs, targets, and diseases
triplets, it is a generic model that can be applied to other
triplets. Our main contributions are as follows:

● Utilizing heterogeneous graph neural network for
drug-target-disease triplet prediction: We propose a
novel approach that models the complex interactions be-
tween drugs, targets, and diseases using a heterogeneous
graph neural network (HGNN). By incorporating different
types of nodes and edges, our approach effectively cap-
tures the rich information embedded in the interactions
between these entities, leading to improved prediction
performance.

● Introducing the HeTAN model: We develop a novel
model, HeTAN, by proposing a novel triplet message
passing and triplet-wise attention mechanisms on differ-
ent types of entities in a heterogeneous graph. Our model
goes beyond the pair-wise interaction and captures higher-
order triplet-wise interactions to make triplet predictions
on the heterogeneous graph. While triplet message pass-
ing enables passing the information among three different
entities (drug-target-disease), the triplet attention mecha-
nism enables the model to focus on the most relevant
pairs for an entity instead of the most relevant neighbor.
These enhance its predictive accuracy and its ability to
capture intrinsic and complex interactions among three
entities. No prior work in GNN and HGNN has explored
triplet-wise message-passing and attention mechanisms.

● Extensive Experiments: We conduct extensive experi-
ments to show the effectiveness of our model on two
different datasets. We also compare the proposed HeTAN
model with several baseline models. The results with
different accuracy measures show that our method signif-
icantly surpasses the baseline models. In addition, differ-
ent case studies denote that different datasets and external

literature evidence can validate our model’s predictions.
The remainder of this paper is organized as follows: Section

II reviews related works. Section III describes the creation
of a heterogeneous graph. Details of the HeTAN model are
presented in Section III. Experiments and results are discussed
in Section IV. Finally, Section V concludes the paper.

II. RELATED WORKS

This section provides an overview of existing research
in computational predictions of drugs, targets, and diseases,
specifically on triplet prediction for high-dimensional struc-
tured data.

A. Modeling drug-target-disease

Treating human diseases involves interactions among drugs,
biological targets, and disease pathways. Computational phar-
macology seeks to uncover associations among these entities
and understand drugs’ mechanisms of action (MoAs) [1]. A
common technique involves network-based inference models,
such as bipartite networks with distinct layers for drugs and
diseases (targets). Various machine learning methods, includ-
ing random walks, matrix factorization, and support vector
machines [16], have been used to predict new drug-disease
and drug-target interactions.

DTINet [15] integrates diverse drug-related information
to build a heterogeneous network and employs a compact
feature learning algorithm to derive low-dimensional vector
representations of nodes. This model uses a known set of
drug-target associations as a reference to determine the optimal
projection from the drug space onto the protein space, ensuring
that the projected feature vectors of drugs closely align with
the feature vectors of their known targets. Chen et al. [16]
integrated a protein-protein similarity network, a drug-drug
similarity network, and a drug-target interaction network into
a heterogeneous network. Using a random walk algorithm,
they inferred new drug-target connections without directly
modeling drug-disease relationships, focusing on predicting
drug-target interactions by learning a transformation matrix
from known interactions. Similarly, Fu et al. [17] utilized
known drug-target connections from various data sources but
did not explicitly use drug-disease-target triples, thus only
predicting drug-target interactions. Zheng et al. [18] developed
a matrix factorization method based on the similarity of
chemical structures and protein sequences to establish drug-
target relationships. These methods rely on chemical structure
similarity through structural fingerprints and protein sequence-
based similarity. However, these approaches treat drug-disease
and drug-target predictions as separate tasks, limiting a com-
prehensive understanding of the interconnected drug-target-
disease relationships.

B. Triplet Prediction

Triplet prediction has broad applications, ranging from drug
repurposing to natural language processing and computer
vision. Zhang et al. [19] introduced an attention mechanism
based on transformers to capture relationships between three



entities (query, key, and value) for improved language under-
standing and generation. In natural language processing, triplet
prediction has been used for tasks like relationship extraction,
where models use sentence-level attention and entity descrip-
tions to predict relationships between entity triplets in text
[20]. In computer vision, triplet prediction techniques have
been used for face recognition and person re-identification
[21].

In drug-target-disease prediction, various models have been
developed, such as collective matrix factorization [22] and
neural tensor networks [7], to capture nonlinear dependencies
within triplets. Recent research explores the interdependence
of drugs, targets, and diseases through event-graph modeling
and neural tensor network models [7], [23]. Meanwhile, recent
advancements have explored the potential of hypergraphs and
hypergraph neural networks in biomedical problems [24], [25],
including drug-microbe-disease associations, [26]. A hyper-
graph is a unique graph with hyperedges. Unlike a regular
graph where the degree of each edge is 2, hyperedge is
degree-free; it can connect an arbitrary number of nodes.
While these approaches are significant, the application of
heterogeneous graph neural networks (HGNNs) and triplet
attention mechanisms remains largely unexplored.

Despite many proposed models for triplet prediction, most
focus on homogeneous entities, and none have applied graph-
based models to drug-related problems. HeTAN distinguishes
itself in drug repurposing by pioneering the combined use of
HGNNs and triplet attention mechanisms. While defined for
drug-target-disease triplets, HeTAN can be applied to other
triplets as well.

III. METHODOLOGY

Given that a triplet includes a drug, a target, and a
disease, our goal is to predict whether the triplet has an
interaction. In this paper, we propose a novel approach that
leverages the power of heterogeneous information networks
(HIN) and introduces the concept of triplet attention. To
achieve this, we develop the Heterogeneous Graph Triplet
Attention Network (HeTAN), which employs an end-to-end
encoder-decoder architecture. The encoder integrates a triplet
attention mechanism to determine the significance of pairs
(e.g., target-disease) for the other entity (e.g., drug) while
learning embeddings of all entities and triplets. Moreover,
HeTAN incorporates a decoder that learns and predicts the
interaction between entities of triplets. The system architecture
of HeTAN is outlined in Figure 1. We optimize the model
parameters with a cross-entropy loss function.

Our proposed model consists of the following steps:
1) Heterogeneous Graph Construction & Node’s Feature

Extraction
2) Heterogeneous Graph Triplet Attention Network Archi-

tecture
● Encoder: Triplet Attention-based node representation

learning
● Decoder: Drug-Target-Disease triplet prediction

A. Heterogeneous Graph Construction & Node’s Feature Ex-
traction

The first step in our approach is to construct a heterogeneous
graph that captures the complex relationships among drugs,
proteins (targets), and diseases. The graph consists of three
types of nodes: drugs, proteins, and diseases. We establish
edges between these nodes based on known drug-target inter-
actions and drug-disease associations. This construction allows
us to represent the rich interactions and dependencies between
different entities in the graph.

Graph neural network (GNN) models can optimize and
refine node representations with an iterative learning process.
These models transform initial node attributes or features
with message passing and aggregation mechanisms from the
node’s neighbors to generate enriched and effective node
vector representations. In our next step, we utilize the struc-
tural properties of drugs and targets to extract node features
from our heterogeneous graph. Specifically, we focus on the
chemical substructures of drugs and targets, represented as
SMILES strings [27] and Amino Acid sequences, respectively.
We employ the Explainable Substructure Partition Fingerprint
(ESPF) [28] algorithm to create drug and target features. ESPF
decomposes the SMILES string and Amino Acid sequence
into frequent substructures, selecting the most significant ones
based on a frequency threshold. These substructures provide
informative features for the drugs and targets utilized in the
subsequent steps of the HeTAN model. We represent disease
nodes with one-hot encoded representations. After construct-
ing the heterogeneous graph and extracting node features, we
propose the HeTAN architecture for learning representations
that capture complex relationships among drugs, targets, and
diseases.

B. Heterogeneous Graph Triplet Attention Network

The core goal of our research is to address the challenge of
predicting drug-target-disease interactions. To achieve this, our
model HeTAN leverages the rich information in heterogeneous
networks and captures the complex relationships among drugs,
targets, and diseases. The model is trained using an end-
to-end approach to predict drug-target-disease interactions.
The model is responsible for aggregating information from
neighboring nodes and learning higher-order relationships in
the graph using a triplet attention mechanism, the critical
component of our model. The triplet attention mechanism
calculates attention coefficients based on the features of all
three nodes in a triplet (i, j, and k), where i is the central node,
and j and k are neighboring nodes. When aggregating infor-
mation, these coefficients are used to weigh the importance of
neighboring node pairs for the central nodes in each triplet.
The attention mechanism is applied to all graph-generated
triplets, enabling the model to capture complex, interconnected
relationships among the different node types. Afterward, the
encoded representations of nodes are obtained by aggregating
information from neighboring nodes, weighted by the atten-
tion coefficients. This process is repeated for each layer of



Fig. 1: The HeTAN workflow comprises three steps: Heterogeneous Graph Construction, Encoder, and Decoder. Initially, a
heterogeneous network is built with drug, target, and disease nodes connected by drug-target or drug-disease edges. Target-
disease connections (dashed lines) are inferred from shared drug associations. We introduce Triplet Message Passing (TMP)
and Triplet-wise attention to generate node representations. Finally, using concatenated node representations, a Multi-Layer
Perceptron (MLP) predicts drug-target-disease interactions.

the HeTAN model, allowing the model to learn increasingly
complex patterns and dependencies across multiple layers.

Our proposed model consists of the following steps:
● Encoder: Triplet Attention-based Node Representation

learning
● Decoder: Predicting Drug-Target-Disease Interactions
1) Node Representation Learning (Encoder): The encoder

component of our model focuses on learning informative node
representations. In a heterogeneous graph, nodes and edges
belong to different types, and each type of node has its own
distinct feature space. To effectively learn informative node
representations, we must align these diverse feature spaces
into a common one. This enables meaningful comparisons
and interactions among nodes of different types. To overcome
this challenge, we introduce a type-specific transformation
matrix M , which projects the features of different nodes into
a common feature space as h

′

i =M ○ hi

Traditional Graph Convolutional Networks (GCNs) rely
on pairwise message passing, where neighboring nodes pass
messages to each other. However, this approach falls short
in capturing intricate dependencies beyond pairwise relation-
ships, especially in our case, where understanding drug-target-
disease interactions requires considering the complex relations
inherent in drug-target-disease triplets.

To solve this limitation, we define the Triplet Message
Passing function (TMP), a novel mechanism that leverages
node triplets for representation learning. Instead of pairwise
interactions, TMP considers neighboring node pairs and their
influence on the central node. For a central node of type i,

we define its neighbors as node pairs (Ni) comprising node
pairs of type j and k as Ni = {(j1, k1), ..., (jn, kn)}. We pass
messages from these neighbor pairs to the central node i. This
allows the model to capture richer contextual information and
complex relationships in drug-target-disease interactions. The
triplet message passing function is defined as:

zli = TMP (zl−1i ,Ni) (1)

For one central node, there are several node pairs as the
neighbors. However, it is essential to note that not all neighbor
pairs are equally crucial for the central node. Message passing
should consider these varying levels of importance. We design
a novel Triplet-wise Attention mechanism to incorporate the
importance of neighbor pairs for a central node into message
passing. This attention mechanism utilizes the features of all
three nodes in a triplet and assigns attention coefficients,
signifying the relative importance of the neighbor pairs for
the central node. Based on the features of all three nodes in a
triplet, the attention coefficient eijk is defined as follows:

eijk = a(h
′

i, h
′

j , h
′

k)
= LeakyRELU(NN(h

′

i∣∣h
′

j ∣∣h
′

k))
(2)

In Eq. 2, a denotes the triplet-wise attention mechanism, and
∣∣ denotes the concatenation operation. We employ a neural
network in the attention mechanism, denoted as NN . This
neural network is designed to capture essential relationships
and dependencies among the nodes in a triplet. Additionally,



to capture the nonlinear dependencies among drug-target-
disease data, we apply the LeakyReLU activation function.
LeakyReLU is chosen for its ability to introduce nonlinearity
in the model, allowing it to capture complex relationships crit-
ical for accurately predicting drug-target-disease interactions.

It is vital to make attention coefficients easily comparable
across different nodes. Therefore, the attention coefficients
are then normalized using a Softmax function. This step
ensures that the model appropriately weighs the attention of
each neighbor when aggregating information. The normalized
attention coefficient αijk is defined as follows;

αijk = softmaxj(eijk)

= exp(eijk)
∑l,m∈N(i) exp(eilm)

(3)

During the triplet message passing process, it is imperative
to consider the message from neighbor pairs. To generate
messages from pairs, we concatenate the representations of
the nodes within the pair. We then pass this concatenated
feature vector of size 2d through a single-layer feedforward
neural network to transform it into a feature vector of size
d. After multiplying each pair message with calculated pair-
wise attention, these messages are aggregated and combined
with the central node’s representation using a self-attention
mechanism. This mechanism considers the node’s features
and aggregated information, allowing the model to capture
its unique influence within the heterogeneous graph. So, the
triplet message passing function, TMP in Eq 1 is defined as
follows:

zi = δ(h
′

i +W ○ ∑
j,k∈N(i)

(αijk ○NN(h
′

j ∣∣h
′

k))) (4)

where ○ represents multiplication operator and W is a trainable
parameter. To incorporate self-attention, we use W , which
determines the weight or importance of node i’s embedding
in the aggregation process. The purpose of W is to control
the influence of node i’s features and the aggregated features
of its neighboring nodes on the overall representation.

We employ multi-head attention to capture more complex
patterns and relationships, each focusing on different aspects
of the data. This further enhances the model’s ability to learn
intricate patterns and relationships within the heterogeneous
graph. In multi-head attention, multiple attention mechanisms
(K) are used individually to transform the features, and the
outputs are concatenated (∣∣) to obtain the final representation.
So, the final triplet message passing with multi-head attention
is defined as follows;

zi = ∣∣Kk=1δ(h
′

i +W ○ ∑
j,k∈N(i)

(αijk ○NN(h
′

j ∣∣h
′

k))) (5)

By integrating these equations and steps, our model
learns informative node representations within a heterogeneous
graph. This ensures it captures complex relationships, intricate

patterns, and crucial interactions for predicting drug-target-
disease interactions.

2) Drug-Target-Disease Triplet Prediction (Decoder):
Our model has a decoder component that predicts the likeli-
hood of interactions between drugs, targets, and diseases as
new triplets based on the representations of entities obtained
from the encoder. Decoder, in particular, assigns a score to
drug, target, and disease triplet (vi,vj ,vk), expressing how
likely it is that drug vi target vj , and disease vk are interacting.
The corresponding entities’ features are concatenated and
passed through a multilayer perceptron (MLP).

predx,y,z =MLP (zx∣∣zy ∣∣zz) (6)

The MLP outputs a prediction score, Y ′, between 0 and 1.
A score close to 1 indicates a high likelihood of interaction
among the triplets, whereas a score close to 0 indicates less
likely interaction.

3) Model Optimization: We train our entire encoder-
decoder architecture as a binary classification problem by
minimizing a binary cross-entropy loss function specified as
follows:

L = −
N

∑
i=1

Yi logY
′

i + (1 − Yi) log(1 − Y
′

i ) (7)

where N is the total number of triplets, Yi is the actual label
indicating the presence or absence of an interaction for the
triplet, and Y

′

i is the predicted score for the triplet.

C. Analysis of HeTAN model

Here we give the analysis of HeTAN as follows:
● Handling Diverse Nodes and Relationships: HeTAN

effectively handles different types of nodes and relation-
ships, integrating rich semantics within a heterogeneous
graph. We facilitate message passing among neighbor
node pairs and a given node. During this message passing,
we incorporate the importance of neighbor pairs for a
central node through a novel Triplet-wise Attention mech-
anism. Leveraging Triplet Message Passing and Triplet-
wise Attention allows for enhanced integration, promo-
tion, and improvement of diverse node embeddings.

● Efficiency and Complexity: The proposed HeTAN is
highly efficient and can be easily parallelized. The com-
plexity of HeTAN can be analyzed based on its main
components: heterogeneous graph construction, triplet
attention mechanism, and message passing. The initial
step of constructing a heterogeneous graph involves nodes
(drugs, targets, diseases) and edges (interactions), with
a complexity of O(∣V ∣ + ∣E∣). For each triplet of nodes
(i, j, k), the triplet attention mechanism computes atten-
tion scores and normalizes them, resulting in a complexity
of O(∣E∣ff ′ + ∣V ∣df ′), where f is the initial feature
dimension, f ′ is the output feature dimension, and d is
the average degree of nodes.
HeTAN leverages multi-head attention to capture com-
plex patterns, scaling the computation by the number



TABLE I: Statistics of Dataset

# of Instances DrugBank (DB) DrugBank and CTD
Drugs 531 450
Targets 836 708

Diseases 279 1, 267
Triplets 27,238 175, 288

TABLE II: Hyper-parameter Settings

Parameter Values
Learning rate 1e-2, 5e-2, 1e-3, 5e-3, 1e-5

Number of heads per layer 8, 16, 32
Hidden units 8, 16, 32, 64, 128

Dropout 0.1, 0.3, 0.5, 0.6
Weight decay 0.01, 0.001

of heads K. The message passing and aggregation pro-
cess, combined with multi-head attention, contributes to
an overall complexity of O(K(∣E∣ff ′ + ∣V ∣df ′)). This
efficient handling of heterogeneous graphs and higher-
order interactions enables HeTAN to effectively capture
intricate relationships among drugs, targets, and diseases,
demonstrating its capability in drug-target-disease triplet
prediction.

IV. EXPERIMENT

To evaluate our HeTAN model, we conduct experiments
involving negative sampling and random dataset splitting into
train and test sets. Our performance assessment include Recall,
Precision, F1-score, AUROC, and the commonly used top-
n metric hit@n. This section summarizes our experimental
parameters, evaluation protocols, and analysis of results.

A. Datasets, Parameter Settings & Baselines

Our study utilizes data from DrugBank and CTD, pro-
viding insights into drug-related information. Two dataset
configurations are employed. One uses data exclusively from
DrugBank, encompassing details about drug-target interactions
and drug-disease associations. The other configuration inte-
grates information from DrugBank (concerning drug-target
interactions) with data from CTD (providing drug-disease
associations). This integration provides a comprehensive view
of <drug, target, disease> triplets. Subsequently, the DrugBank
and combined datasets will be referred to as DB and DB&C,
respectively. Table I summarizes the vital characteristics of
nodes and edges in the heterogeneous graph.

Datasets are split into random training (80%) and testing
(20%) subsets for five iterations. This splitting process is
repeated five times, and the average accuracy metrics are
calculated and reported in the results section. The optimal
hyper-parameters are obtained by grid search based on the
validation set. The ranges of grid search are shown in Table
II. We train the HeTAN model using the cross-entropy loss and
optimize the model parameters using the Adam optimizer. The
optimal learning rate is determined to be 1e-5, and the optimal
dropout rate is found to be 0.6 to prevent overfitting. Training
runs for 2000 epochs with early stopping after 200 consecutive
epochs without validation loss improvement.

To construct negative triplets, we employ negative sampling
by randomly replacing one or all nodes in positive triplets, en-
suring they are absent from the actual data. We assess HeTAN’s
performance through a diverse set of metrics encompassing
accuracy, precision, F1-score, and AUROC. We also utilize
the commonly used top-n metric hit@n and NDCG@n, as
proposed by [29], [30]. Hit@n measures whether a test triplet
appears within the top-n ranked predictions, while NDCG@n
prioritizes higher-ranked matches. We rank triplets in descend-
ing order based on model prediction scores, prioritizing those
most likely to represent valid interactions.

To evaluate HeTAN’s effectiveness, we compare it to a range
of state-of-the-art models categorized by their approaches:

● Tensor Decomposition Methods: CP and Tucker are fa-
mous tensor models with diverse variants that are being
successfully applied in health data analysis [31]. They
both adopt multilinear assumptions.

● Attention-based Methods: We use transformer, a robust
deep learning architecture that captures complex relation-
ships and patterns in the data. It utilizes self-attention
mechanisms to effectively learn and represent the inter-
actions between drugs, targets, and diseases. For these
models, the embeddings of the triplet nodes (drug, target,
disease) are concatenated, and the combined embeddings
are used to predict interactions.

● Graph Neural Network (GNN): We use GNN architec-
tures on our heterogeneous graph to learn the representa-
tion of nodes. We select three standard GNN-based meth-
ods: GIN [32], GAT [33], and GraphSAGE [34]. Among
these GNN models, GAT [33] uses pairwise attention to
generating node representation. Similar to attention-based
methods, GNN models concatenate the embeddings of the
triplet nodes and use these concatenated embeddings for
interaction prediction.

● Heterogeneous Graph Neural Network (HGNN): For this
baseline, we use the commonly used HGNN model het-
erogeneous graph transformer (HGT) [35]. HGT incorpo-
rates pairwise attention on a heterogeneous graph to learn
the representation of nodes. The triplet node embeddings
are concatenated and used to predict interactions.

● NeurTN: Neural Tensor Network (NeurTN) [7] combines
tensor algebra and deep neural networks, offering a
more powerful way to capture the nonlinear relationships
among drugs, targets, and diseases. Both NeurTN and
HeTAN combine drug-target and drug-disease interactions
from DrugBank and CTD.

● DDTE: Moon et al. [36] construct a heterogeneous knowl-
edge graph including various drug-related information
and utilize TransE [30] model to infer drug–disease–target
relationships.

● MHGNN: MHGNN-DTI [37] builds the model with a
dual-channel architecture to learn drug and target embed-
dings, respectively, using a graph attention mechanism
and metapath techniques. It proposes building correlation
graphs to exploit high-order relations. Finally, it performs



TABLE III: Comparing performance of HeTAN with other baseline models on DB

Model Method F-1 Score Precision Recall ROC-AUC AUPR
TD 47.00 48.51 45.59 49.19 48.98

Tensor-based CPD 52.91 52.19 56.19 49.84 50.06
Attention-based Transformer 52.31 62.96 51.18 60.62 59.46

GraphSAGE 72.24 61.3 83.94 66.4 59.92
GNN-based GIN 74.06 71.18 77.2 73.08 66.31

GAT 72.63 62.65 82.34 67.64 60.92
HGT 80.44 82.71 79.41 83.13 83.32

HGNN-based MHGNN 81.9 87.16 83.86 92.63 91.57
HeTAN 86.31 88.43 84.34 93.46 93.07

TABLE IV: Comparing performance of HeTAN with other baseline models on DB&C

Model Method F-1 Score Precision Recall ROC-AUC AUPR
TD 53.17 62.45 47.86 60.65 62.04

Tensor-based CPD 57.23 63.72 52.19 59.82 60.76
Attention-based Transformer 83.05 85.24 81.09 82.04 75.36

GraphSAGE 83.31 78.97 90.04 75.98 70.72
GNN-based GIN 83.98 78.16 83.49 76.45 71.52

GAT 85.17 82.44 82.11 83.76 77.15
HGT 85.22 87.08 84.55 87.98 84.07

HGNN-based MHGNN 87.7 85.88 88.79 95.64 94.45
HeTAN 90.91 93.12 89.88 98.01 97.75

Fig. 2: Evaluation of top-n performance for HeTAN and other baseline models in terms of
a) Hit@n and b) NDCG@n on DB and DB&C

pairwise drug-target interaction prediction.

B. Comparison with baselines

In this study, we conduct a comprehensive performance
analysis of HeTAN compared to a selection of state-of-the-
art baseline models. We employ diverse performance metrics
to assess these models’ efficacy. Specifically, we report the
F-1 Score, Precision, Recall, ROC-AUC, and AUPR results
in Table III for DB and Table IV for DB&C. Both tables
refer to the tensor-based baselines, tucker decomposition and
CP decomposition as TD and CPD, respectively. Our model,

HeTAN, outperforms all baseline models for both datasets,
showcasing its exceptional predictive capabilities.

For instance, on DB, HeTAN achieves impressive F-1 score,
ROC-AUC, and AUPR of 86.31%, 93.46%, and 93.07%, rep-
resenting significant improvements over the best-performing
baseline, MHGNN, which achieves F-1 score, ROC-AUC, and
AUPR of 81.9%, 92.63%, and 91.57%, respectively. The su-
perior performance of HeTAN is further evident in the DB&C
dataset, where it attains F-1 score, ROC-AUC, and AUPR of
90.91%, 98.01%, and 97.75%, surpassing the performance of
other models by a considerable margin.



TABLE V: Novel Triplet Predictions by HeTAN FROM DB&C
Drug Target Disease DB&C Label Prediction DB Label

Carbamazepine NR1I2-HUMAN Osteoporosis 0 0.99 1
Testosterone ERR3-RAT Myocardial infarction 0 0.98 1
Nefazodone DRD2-HUMAN Schizophrenia 0 0.97 1
Raloxifene ERR3-RAT Obesity 0 0.93 1
Fenofibrate MMP19-HUMAN Psoriatic arthritis 0 7e-09 0

TABLE VI: Novel Triplet Predictions by HeTAN FROM DB
Drug Target Disease DB Label Prediction DB&C Label

Cyclobenzaprine 5HT2C-HUMAN Muscle Spasm 0 0.99 1
Cyclobenzaprine AA2AR-HUMAN Gout 0 0.98 1

Imipramine ADA1D-HUMAN Interstitial Lung Disease 0 0.97 1
Quetiapine HRH1-HUMAN Schizophrenia 0 9.9e-10 0
Verapamil CAC1S-HUMAN Cluster headache 0 5e-07 0

TABLE VII: Top five drug-target pairs predicted by our proposed HeTAN for depression
Drug (DrugBank) Target (UniProt) Evidence

Amitriptyline Sodium-dependent serotonin transporter Kim Lawson [38]
Nortriptyline 5-hydroxytryptamine receptor 2A Pierre Blier [39]
Imipramine Sodium-dependent serotonin transporter Dempsey et al. [40]

Nortriptyline Muscarinic acetylcholine receptor M5 Philip et al. [41]
Nortriptyline MD(2) dopamine receptor Pierre Blier [39]

In addition to these performance metrics, we adopt the top-
n metrics, Hit@n and NDCG@n, as illustrated in Figure 2.
These metrics are particularly critical in triplet prediction, as
they assess the ranking quality of the model’s predictions.
HeTAN’s top-n metrics (Hit@n and NDCG@n) performance
showcases its superior ranking ability, which is crucial for
accurate triplet prediction. On DB, HeTAN achieves a Hit@15
score of 50.11% and NDCG@15 of 27.36%, significantly
exceeding the top baseline (MHGNN) by over 6% and 3%,
respectively.

Tensor-based models exhibit solid performance but often
lag in recall and ranking. Attention-based methods, like the
Transformer, improve Precision and Recall. NeurTN, combin-
ing tensor and attention models, excels in top-n metrics. Since
different accuracy results like F-1 score, Precision and Recall
are unavailable on NeurTN paper, we could not present and
analyze these results with other baseline models. Similarly, we
could not obtain these results from DDTE.

GNN and HGNN-based models consistently achieve F-
1 scores surpassing 70%, emphasizing the pivotal role of
graph structural information. GNN and HGNN-based mod-
els represent interactions between graph nodes and capture
graph dependence through message passing. Comparing graph
attention-based models, GAT and HGT rely on pairwise
attention, and HeTAN utilizes triplet-wise attention. HeTAN
consistently performs better than GAT and HGT. For example,
GAT achieved F-1 scores of 72.63% on DB and 85.17%
on DB&C, while HGT scored 80.44% on DB and 85.21%
on DB&C. One notable heterogeneous graph neural network,
MHGNN achieves F-1 scores of 81.9% on DB and 87.7%
on DB&C, demonstrating strong performance. MHGNN’s
strength lies in its dual-channel architecture and meta-path
techniques to exploit high-order relations. Still, MHGNN falls
short of HeTAN’s results. HeTAN achieve 86.31% and 90.91%
on DB and DB&C, respectively.

HeTAN effectively manages diverse nodes and relationships,
integrating rich semantics within a heterogeneous graph. By
using triplet message passing and triplet-wise attention, the
model captures intricate patterns and dependencies, offering
a comprehensive understanding of drug-target-disease associ-
ations. Multi-head attention enhances its ability to learn from
complex data, ensuring robust predictions. Overall, HeTAN
significantly improves prediction accuracy, positioning itself as
a powerful tool for drug discovery and personalized medicine.

C. Prediction and Validation of Triplets

This study evaluates HeTAN’s ability to predict drug-target-
disease interactions using real-world datasets. To determine its
effectiveness in predicting missing interactions, we compare
HeTAN’s predictions with data from two distinct datasets.

We start by selecting triplets from Dataset DB&C, which
lack interaction data in DB&C but possess relevant association
information in DB. We train HeTAN on the DB&C dataset,
ensuring that the selected triplets are used exclusively in the
test set to minimize potential bias. The predicted scores for
these triplets, presented in Table V, consistently exceed 90%,
suggesting that these triplets are likely to exhibit interactions
despite the absence of explicit interaction data in DB&C.
To validate these predictions further, we cross-reference them
with the information in DB. Remarkably, this comparison
confirms the interactions between these triplets, reinforcing
the predictive power and accuracy of HeTAN.

To expand our validation process and test HeTAN’s gen-
eralizability, we select another set of five drug triplets from
DB, which lack interaction information within DB but contain
such data in DB&C, as highlighted in Table VI. We train
HeTAN using the DB dataset for this validation, tailoring
the model specifically to this unique dataset configuration.
Subsequently, we validate the predicted scores by cross-
referencing them with DB&C, which serves as an independent



validation set. Validating predicted scores against DB&C em-
phasizes HeTAN’s reliability and generalizability, showcasing
its adaptability across datasets and reinforcing its real-world
predictive capabilities.
D. Case Study on Depression

Personalized treatment is a core objective in our medical
research, particularly in identifying effective drugs for specific
diseases and understanding their biological targets. HeTAN
has been employed to uncover new drug-target combinations
relevant to depression—a complex condition with various
molecular factors. By focusing on triplets where the disease
is depression, HeTAN was trained on a heterogeneous graph
from DrugBank and CTD datasets. For this experiment, we
filter our predicted triplets to focus on those where the
disease is depression. Table VII enlists the top five pairs
of (drug, target) corresponding to depression and literature
evidence supporting these predictions. For depression, these
pairs are the highest-ranked predictions based on the model’s
scoring and have corresponding evidence in the literature,
demonstrating their potential relevance and validity. These
results underline HeTAN’s potential in identifying clinically
relevant drug-target pairs, marking a significant step toward
personalized medicine. The model’s reliable predictions offer a
promising approach to revolutionizing treatments for complex
diseases like depression.

E. Ablation Study
To assess the contribution of each component in HeTAN,

we perform an ablation study with five variants:
● HeTAN-Sum (HeTAN-S): This variant employs sum-

mation instead of concatenation and neural network trans-
formations for neighbor embedding in Eq 4.

● HeTAN-Concat (HeTAN-C): Three neighbor node
embeddings are concatenated in Eq 2 and then reduced
in dimension.

● HeTAN-Elem-Prod (HeTAN-EP): This variant uses
the element-wise product on neighbor node embeddings
in Eq 4.

● HeTAN-Triplet-Attention-Sum
(HeTAN-TAS): In this variant, three neighbor node
embeddings are summed in Eq 2 to get triplet-wise
attention.

● HeTAN-Triplet-Attention-Elem-Prod
(HeTAN-TAEP): This variant applies the element-
wise product on three neighbor node embeddings in
Eq 2 to get triplet-wise attention.

In comparing the model variants with the original HeTAN,
HeTAN-Sum and HeTAN-Concat demonstrate weaker per-
formance, likely due to their use of summation or concatena-
tion, which may not capture complex relationships as effec-
tively as the original approach. Similarly, HeTAN-TAEP and
HeTAN-TAS underperform compared to HeTAN, highlighting
the efficacy of applying a neural network for concatenated
embeddings. As shown in Figure 3, the original HeTAN model
consistently surpasses its variants across key metrics like F1-
score, Recall, and ROC-AUC, underscoring the effectiveness

Fig. 3: Performance Comparison of HeTAN with its variants

of its triplet-wise attention and message passing mechanisms.
This analysis confirms HeTAN’s robustness in managing com-
plex, heterogeneous data in biomedical research.

V. CONCLUSION

HeTAN stands out as a powerful model for modeling
drug-target-disease interactions thanks to its dedicated HGNN
architecture and innovative triplet-attention mechanism. This
approach effectively addresses limitations encountered in pre-
vious models, leading to significant improvements in perfor-
mance. The novel triplet-attention mechanism holds broad
potential for application beyond drug discovery, extending to
diverse domains involving heterogeneous graphs and higher-
order interactions.

While HeTAN is currently defined for drug-target-disease
triplets, future research could further enhance its capabilities
by applying it to different triplet combinations and incorporat-
ing additional elements, such as drug-target-pathway-disease
interactions. This expansion could lead to a deeper understand-
ing of drug mechanisms and improved predictive accuracy.
Moreover, integrating multi-omics data and exploring more
complex graph structures are promising avenues for boosting
HeTAN’s predictive power and providing a more comprehen-
sive view of biological processes. These advancements can
significantly contribute to progress in personalized medicine
and drug development, ultimately benefiting patient outcomes
and healthcare systems.
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