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Abstract

Modeling interactions between drugs, microbes, and diseases is
essential for advancing drug discovery and precision medicine. Al-
though most existing computational approaches focus on pairwise
association prediction, such as drug—microbe or microbe-disease
associations, they often overlook the interdependencies among all
three entities. In real-world biomedical systems, drug-microbiome
interactions can modulate treatment efficacy, influence toxicity, and
shape disease trajectories. Moving beyond binary relationships to
explore triplet-level associations is essential for uncovering drugs’
mechanisms of action (MoAs). Recent advances in Graph Neural
Networks (GNNs) have significantly improved the modeling of
complex molecular structures, enabling more accurate property
prediction. However, molecular and biomedical data extend beyond
graph structures, encompassing diverse modalities such as molecu-
lar sequences, taxonomic hierarchies, and ontological descriptors—
features that GNNs cannot fully capture. To address these limita-
tions, we propose MCL-DMD (Multi-modal Contrastive Learning for
Drug-Microbe-Disease Association Prediction), a novel framework
that combines heterogeneous graph modeling with domain-specific
biomedical knowledge. MCL-DMD employs HeTAN (Heterogeneous
Triple Attention Network) to model the interconnectedness of all
entities in a heterogeneous graph and augments it with a biomed-
ical knowledge encoder that leverages SMILES representations,
microbial taxonomies, and MeSH disease descriptors. Through
multi-modal contrastive learning, MCL-DMD aligns cross-modal rep-
resentations to improve semantic consistency and predictive robust-
ness. Experimental results demonstrate that MCL-DMD significantly
outperforms state-of-the-art baselines in both classification and
ranking metrics, offering a powerful framework to uncover novel
drug-microbe-disease associations.
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1 Introduction

The intricate interplay among drugs, microbes, and diseases plays
a crucial role in disease progression and therapeutic outcomes.
Microbes significantly influence drug metabolism, efficacy, and tox-
icity, while drugs can alter microbial diversity and function, thus
affecting disease states [1]. Understanding these interactions is crit-
ical for drug repurposing, personalized medicine, and minimizing
adverse drug reactions.

Recent advances in machine learning have facilitated the study
of drug mechanisms of action (MoAs) through various tasks such
as drug behavior analysis and disease modeling [2]. Computational
methods have been developed to predict pairwise associations, in-
cluding drug-microbe [1], microbe-disease [3], and drug-disease
interactions [4]. However, such pairwise approaches do not capture
the full complexity of biological systems. Many diseases are influ-
enced by a combination of microbial activity and drug interactions,
highlighting the need to model these relationships as triplets rather
than as isolated pairs. Neglecting higher-order dependencies can
obscure key insights into disease mechanisms and potential treat-
ment synergies [5]. Although recent studies have highlighted the
importance of predicting drug-microbe-disease (DMD) associations,
this remains an area needing additional research [6]. Therefore, a
more comprehensive approach that models triplet-level interactions
among drugs, microbes, and diseases is essential to fully capture
their biological interplay.

Traditional methods for biomedical triplet prediction primarily
rely on tensor factorization, representing interactions as multi-
dimensional tensors and applying decomposition techniques to
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infer missing associations [7]. Although models like Canonical
Polyadic (CP) and Tucker decomposition can uncover latent pat-
terns, they suffer from linearity assumptions and data sparsity,
limiting their applicability to complex biomedical data. Nonlinear
tensor approaches offer improvements but often depend on Gauss-
ian processes, which are challenging to estimate [8]. Moreover,
these tensor models do not leverage graph-based machine learning
techniques, which has become central in drug discovery.

In contrast, Graph Neural Networks (GNNs) effectively cap-
ture structured, nonlinear relationships via iterative message pass-
ing [9], and have been widely applied in predicting chemical prop-
erties [10, 11]. Hypergraph Neural Networks (HGNNs) further ex-
tend this capability to model high-order interactions in triplet-level
tasks. For instance, Liu et al. [12] proposed a multi-view hypergraph
contrastive learning model for robust DMD prediction. However,
despite their strengths, GNNs and HGNNs often neglect critical
non-graph biomedical attributes, such as molecular structures (e.g.,
SMILES), taxonomic hierarchies, and disease ontologies (e.g., MeSH).
Since biomedical entities are inherently multi-faceted, ignoring
such domain knowledge leads to incomplete representations and
suboptimal predictions. This highlights the need for a unified frame-
work that integrates graph-based structures with domain-specific
knowledge — an area still underexplored in triplet association pre-
diction.

To address this challenge, we propose MCL-DMD (Multi-modal
Contrastive Learning for Drug-Microbe-Disease Association Pre-
diction), a unified framework that integrates heterogeneous graph
representations with biomedical domain knowledge-based repre-
sentations. Our model captures complex triplet interactions by
leveraging Heterogeneous Triple Attention Network (HeTAN) [13],
which employs triplet message passing and triplet attention mech-
anisms to learn from heterogeneous graph structures. HeTAN em-
ploys a novel triplet attention mechanism to capture higher-order
interactions within the drug-microbe-disease triplets. To encode
domain-specific knowledge, we incorporate three distinct biomedi-
cal modalities: (i) drug features derived from molecular graphs us-
ing Graph Isomorphism Networks (GIN) [14], (ii) microbe features
based on pairwise functional and taxonomic similarity, and (iii) dis-
ease features computed from semantic similarities and MeSH-based
classifications. These features are processed through a dedicated
encoder to construct domain knowledge-based representations. To
align the representations learned from heterogeneous graphs and
biomedical descriptors, we incorporate a multi-modal contrastive
learning (CL) module. CL aligns semantically similar entities across
different modalities while pushing apart dissimilar ones in the la-
tent space, thereby enhancing representation quality and model
generalization. This integrated approach enables MCL-DMD to cap-
ture complex, multi-faceted interactions among drugs, microbes,
and diseases, ultimately improving the accuracy and robustness of
triplet prediction in biomedical applications. Our main contribu-
tions are summarized as follows:

e Multi-modal integration for triplet prediction: We pro-
pose MCL-DMD, the first multi-modal CL framework for drug-
microbe-disease (DMD) association prediction. By integrat-
ing heterogeneous graph structures with biomedical domain
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knowledge - covering molecular features (SMILES), taxo-
nomic similarities, and ontological descriptors (MeSH), our
model effectively captures complex, high-order dependen-
cies that underpin DMD interactions.

e Contrastive Learning (CL) across modalities: We de-
velop a novel CL module that aligns representations of enti-
ties across heterogeneous graphs and biomedical knowledge
sources. This approach improves generalization by enforc-
ing semantic consistency between graph-based and domain-
specific embeddings.

o Extensive experimental validation: We conduct com-
prehensive experiments on benchmark datasets and demon-
strate that MCL-DMD consistently outperforms state-of-the-art
methods in both classification and ranking tasks. Our model
achieves significant gains in F1-score, ROC-AUC, and Hit@N
metrics, highlighting the effectiveness of multi-modal repre-
sentation learning in biomedical triplet prediction.

The remainder of this paper is organized as follows. Section 2
reviews related work in multi-modal CL and triplet prediction. Sec-
tion 3 introduces our proposed MCL-DMD framework, including its
heterogeneous graph encoder, biomedical knowledge encoder, and
CL strategy. Section 4 presents experimental results and compara-
tive analysis with baseline models. Finally, Section 5 concludes the
paper and outlines future research directions.

2 Related Work

In this section, we present an overview of related research on multi-
modal CL and triplet prediction across various domains.

2.1 Multi-Modal Contrastive Learning

CL is a widely adopted self-supervised paradigm that generates
augmented views of the same data instance and applies contrastive
loss to maximize agreement between representations in the latent
space [15]. Traditional single-stream models have limited gener-
alization due to their inability to independently encode different
modalities. Multi-modal CL, exemplified by CLIP [16], addresses
this by learning aligned representations across modalities using
separate encoders. Recent models like SLIP [17] and DeCLIP [18]
integrate self-supervised objectives to improve efficiency, while
FILIP [19] introduces fine-grained contrastive objectives for local-
ized feature correspondences. Additionally, Yang et al. [20] pro-
posed Dual Space Graph CL, exploring graph representations in
feature and structure spaces, highlighting CL’s adaptability across
domains.

Despite successes in computer vision and NLP, multi-modal CL
for biomedical applications, particularly triplet-based association
prediction, remains underexplored. Biomedical data inherently in-
clude structural representations such as SMILES strings, taxonomic
hierarchies, and ontology-based disease descriptors. Existing meth-
ods often overlook cross-modal alignment crucial for capturing
synergistic effects between entities. To address this, our frame-
work employs multi-modal CL to align heterogeneous biomedical
representations, enabling holistic and accurate predictions of drug-
microbe-disease associations.
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2.2 Triplet Prediction

Triplet prediction has been extensively explored in natural lan-
guage processing (NLP), computer vision (CV), and drug discov-
ery. In NLP, it enables relation extraction by identifying associa-
tions among entities, often using attention mechanisms to enhance
the interpretability of sentence representations. For example, Ji
et al. [21] demonstrated its effectiveness in distant supervision to
extract structured knowledge, while Zhou et al. [22] proposed a
transformer-based framework that models query-key-value inter-
actions to improve relational understanding in textual data. In the
CV domain, triplet learning plays a central role in tasks such as face
recognition and person re-identification. Notably, Schroff et al. [23]
introduced FaceNet, which optimizes embeddings using a triplet
loss function to ensure that representations of the same identity
are close, while those of different identities are pushed apart.

Although triplet-based learning has proven to be effective in
multiple domains, many computational models in biomedicine still
focus predominantly on pairwise relationships rather than higher-
order associations. For instance, in drug discovery, existing works
often predict drug-disease or drug-microbe associations. Liang et
al. [24] proposed NMGMDA, a framework that integrates nuclear
norm minimization with graph attention networks to infer microbe-
drug interactions. Similarly, Zhu et al. [25] developed the Nearest
Neighbor Attention Network (NNAN), which leverages similarity-
based network aggregation to predict drug-microbe associations.
Although effective in modeling direct interactions, these approaches
fail to capture the intricate dependencies among drugs, microbes,
and diseases, which are critical for understanding complex biomed-
ical processes.

To address these limitations, triplet-based prediction models have
recently gained traction in biomedical research, offering a more
comprehensive representation of biological relationships. For exam-
ple, Zitnik and Zupan [26] applied collective matrix factorization
to integrate heterogeneous biomedical data and model drug-target-
disease interactions. Chen et al. [27] introduced a neural tensor
network for drug-target-disease prediction, outperforming tradi-
tional tensor factorization techniques. More recently, HeTAN [13]
introduced a triplet attention mechanism within a heterogeneous
graph framework, significantly improving predictive accuracy.

Despite these advancements, many biomedical triplet-based ap-
proaches still rely heavily on graph-based representations and
often neglect complementary modalities, such as molecular se-
quences, taxonomies, and ontologies. Although graph neural net-
works (GNNs) are effective at modeling interactions, they strug-
gle to incorporate non-graph information, limiting their capacity
to learn holistic representations. To overcome these challenges,
we propose MCL-DMD, a framework that integrates heterogeneous
graphs with molecular features and biomedical ontologies. Using
CL, MCL-DMD aligns multimodal representations, improving both
predictive accuracy and generalization in drug-microbe-disease
association tasks.
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3 Methodology

In this work, we integrate two complementary sources to predict
drug-microbe-disease associations. First, we construct a heteroge-
neous graph representing drugs, microbes, and diseases via pair-
wise edges from confirmed triplets. We then apply a heterogeneous
triple attention network to capture higher-order interactions among
triplet-based message passing and attention. Simultaneously, we
extract biomedical features from multiple modalities. Drugs are rep-
resented using SMILES strings transformed into molecular graphs
via GIN, while microbes and diseases are encoded from taxonomic
and ontological descriptors using fully connected networks. We
then align the heterogeneous graph embedding and the domain
specific features using multi-modal CL, ensuring that similar enti-
ties are close in the latent space. Finally, the integrated embeddings
are concatenated and fed into an MLP to predict the association
likelihood.

3.1 Problem definition and Dataset

Given a triplet consisting of a drug, a microbe, and a disease, our
goal is to learn a predictive function that estimates the likelihood
of an interaction. Let D, M, and N represent the sets of drugs,
microbes, and diseases, respectively. The complete set of potential
drug-microbe-disease (DMD) triplets can be defined as the Cartesian
product:

S=DxMXxN

Each triplet (d,m,n) € S is assigned a binary label p € {0, 1},
where p = 1 denotes a known association and p = 0 indicates an
unverified or unknown interaction. Importantly, a label of 0 does
not necessarily indicate the absence of an interaction, but reflects
the current lack of experimental or clinical evidence.

The objective is to learn a function

f:8—-1[01],

that predicts the probability of interaction for any given triplet
(d, m, n).

Dataset Construction. To build our dataset, we integrate drug-
microbe-disease (DMD) associations from multiple publicly avail-
able sources. Drug-microbe interactions are obtained from MDAD [28],
aBiofilm [29], and DrugVirus [30], while microbe-disease associ-
ations are sourced from HMDAD [31], Disbiome [32], gutMDis-
order [33], and Peryton [34]. These associations are merged to
construct triplets of the form (d, m, n), resulting in a dataset of
2,763 confirmed triplets involving 270 drugs, 58 microbes, and 167
diseases.

Drug molecular information is represented using SMILES (Simpli-
fied Molecular Input Line Entry System) [35] strings obtained from
PubChem [36]. SMILES provide concise, human-readable represen-
tations of molecular structures, which we transform into molecular
graphs for downstream processing. Similarly, microbial taxonomic
data and disease ontological descriptors are extracted from the
NCBI Taxonomy [37] and MeSH [38] databases, respectively. These
resources capture hierarchical relationships essential for modeling
biological similarities between microbes and diseases.

Compared to the total number of possible DMD combinations
(270 x 58 X 167), the number of confirmed associations is extremely
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sparse, representing only 0.11% of all possible triplets. To address
this imbalance, we generate negative samples by randomly shuf-
fling drug-microbe-disease combinations that lack confirmed as-
sociations. This results in a balanced dataset with a 1:1 ratio of
positive to negative samples, which prevents the model from being
biased toward confirmed interactions. Mitigating this class imbal-
ance enables the model to better differentiate true associations from
unknown ones, thereby improving generalization to unseen data.

3.2 Multi-modal CL

In this paper, we propose MCL-DMD, a novel Multi-modal Contrastive
Learning framework for Drug-Microbe-Disease Association Predic-
tion. Our model integrates representations of entities (drug, microbe,
disease) derived from a heterogeneous graph with representations
based on biomedical domain knowledge within an end-to-end ar-
chitecture. MCL-DMD employs CL to align entity representations
in different modalities, thus enhancing the consistency of the fea-
tures and improving the predictive ability. By combining the re-
lational structure among entities with modality-specific domain
knowledge, MCL-DMD offers a robust solution for uncovering novel
drug-microbe-disease (DMD) associations.

The overall architecture of the MCL-DMD model is illustrated in
Figure 1. In the following sections, we provide a detailed overview
of each component.

A. Heterogeneous Graph Triplet Attention Network

We construct a heterogeneous graph G = (V, E) to represent the
complex relationships among drugs, microbes, and diseases. The
set of nodes is defined as

V=DUMUN,

where D, M, and N denote the sets of drugs, microbes, and diseases,
respectively. In this graph, we model each confirmed drug-microbe-
disease interaction—represented as a triplet (d, m, n) with label p =
1) is modeled by adding pairwise edges between the corresponding
nodes. Specifically, for each confirmed triplet, we add the following
edges to the edge set E:

(d,m), (d,n), and (m,n).

To initialize the node features, we incorporate domain-specific
representations rather than random initialization. For drugs, we
use their chemical substructures derived from SMILES strings [39],
processed using the Explainable Substructure Partition Fingerprint
(ESPF) algorithm [40]. ESPF decomposes SMILES strings and amino
acid sequences into frequent substructures and selects the most
informative ones based on a frequency threshold, producing rich
molecular fingerprints for drug and target nodes. Microbes and
diseases are represented using one-hot encoded vectors, providing
distinct identifiers for each entity type.

We adopt HeTAN [13] as our relational module to learn expres-
sive node representations within heterogeneous graphs. HeTAN
leverages a triplet-attention encoder to capture the higher-order de-
pendencies among drugs, microbes, and diseases. Unlike traditional
message-passing mechanisms, which rely primarily on pairwise
interactions, HeTAN employs triplet-level attention. This approach
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allows the model to dynamically assign varying importance to dif-
ferent node pairs within a given triplet, thus enhancing its capability
to accurately model the underlying complex relationships.

Since nodes and edges belong to distinct types in heterogeneous
graphs, each with its own feature space, directly comparing or
aggregating their information is challenging. To address this, as
an initial step, we introduce a type-specific transformation matrix
T, which projects the node features into a shared latent space,
ensuring compatibility between different types of entities. The
transformation is defined as h; =Toh;

Traditional Graph Convolutional Networks (GCNs) rely on pair-
wise message passing, where each node aggregates information
independently from its neighbors. While effective in many settings,
this approach is insufficient for capturing higher-order dependen-
cies—particularly in biomedical networks, where the interaction
between two entities (e.g., a drug and a microbe) is often condi-
tioned on the presence of a third (e.g., a disease).

To address this limitation, we introduce the Triplet Message
Passing (TMP) mechanism, which explicitly incorporates triplet-
level context into representation learning. Instead of aggregating
messages from individual neighbors, TMP considers neighbor pairs
(j, k) and learns their joint influence on a central node i. For a node
of type i, its triplet neighborhood is defined as:

Ni = {(jl’ kl): ] (jna kn)},

where each (j;,k;) is a semantically meaningful pair (e.g., mi-
crobe—-disease pairs for a drug node). By passing messages from
these neighbor pairs to the central node, TMP captures relational
patterns that cannot be observed through pairwise aggregation
alone.

This design allows the model to represent complex biomedical
interactions more faithfully, enriching the learned node embeddings
and improving predictive performance in drug-microbe-disease
association tasks. Formally, the TMP update rule is:

2 =TMP (2L N,

where zg_l is the embedding of node i at layer I — 1, and TMP(-)
denotes the aggregation over all neighbor pairs in Nj.

Not all neighboring pairs contribute equally to the central node’s
representation. To account for this, we introduce a triplet atten-
tion mechanism, which assigns importance scores based on the
features of all three nodes in a triplet. The attention coefficient e; ;.
is computed as:

eijk = LeakyReLU(NN (k|1 k), (1)

where NN is a neural network capturing intricate dependencies
among triplet components. To ensure comparability across different
nodes, attention coefficients are normalized via a softmax function:

exp(e;jx)
k= .
2imeN (i) exP(€irm)

@

(xij
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Figure 1: The MCL-DMD workflow comprises four key steps: heterogeneous graph learning, biomedical domain knowledge encoder represen-
tation learning, Contrastive Learning, and model training. A heterogeneous graph is built with drug, microbe, and disease nodes, refined
via triplet message passing with triplet attention. Simultaneously, structural features from molecular graphs, taxonomies, and biomedical
ontologies are extracted using GIN and FCNs. These representations are enhanced through CL, ensuring consistency across modalities.
Finally, an MLP classifier predicts drug-microbe-disease associations from the integrated embeddings.

To incorporate these attention scores into message passing, we
aggregate neighbor pair messages, transforming them via a feed-
forward layer and combining them with the central node represen-
tation:

a=8h+Wo D (ayxoNN(HI))|. ()
JjkeN (i)

where W is a learnable parameter ensuring effective feature fusion.
To enhance representation learning, we employ multi-head at-
tention, where multiple attention mechanisms operate in parallel,
each capturing different aspects of the data:

zi= K 5|h+Wo Z (@ijk o NN(R{|lh)) | (@)
Jj,keN (i)

By integrating triplet attention with multi-head aggregation,
our model learns enriched representations that effectively capture
complex interactions among drugs, targets, and diseases. This en-
ables us to predict novel drug-microbe-disease interactions with
improved accuracy.

B. Biomedical Domain Knowledge Encoder

In biomedical domains, entities such as drugs, microbes, and
diseases possess distinct attributes that extend beyond graph topol-
ogy and arise from domain-specific knowledge. These features are
essential for capturing the biological and chemical characteristics
necessary for understanding interactions among biomedical entities.

For drugs, SMILES strings encode critical information about molec-
ular structure. For microbes, taxonomic hierarchies offer insights
into phylogenetic relationships. For diseases, MeSH descriptors
provide ontological classifications. Integrating these heterogeneous
biomedical features into predictive models is crucial for achieving
comprehensive and informative representation learning.

To effectively leverage this domain-specific knowledge, we rep-
resent node attributes as drug features (Hp), microbe features (Hy),
and disease features (Hy). Specifically, for drugs, SMILES string
representations are transformed into molecular graphs G = (X, A)
using the DeepChem package [41], where atoms serve as nodes, X
denotes the node (atom) feature matrix, and A is the adjacency ma-
trix encoding molecular bonds. We employ a Graph Isomorphism
Network (GIN) [14]. The feature extraction process for the k-th
layer of the GIN encoder is defined as:

x ) = Mrpo) ((A+(l+e)I)Z(k_l)) )

where MLP (%) is a multi-layer perceptron, [ is the identity matrix,
€ is a learnable scalar, and the initial node features are given by
X0 = X. After applying Global Max Pooling (GMP) [42] to the
learned molecular graph representations, we obtain a set of drug
embeddings compiled as Zp € RIPIXF

For microbes and diseases, we construct similarity-based em-
beddings using established methodologies [43, 44]. Similarity com-
putation is a fundamental concept in bioinformatics and network
medicine [45], where it is hypothesized that biologically similar enti-
ties often participate in shared events, such as influencing the same
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protein or contributing to similar disease mechanisms. To compute
microbe similarity, we use taxonomy, a hierarchical classification
that organizes microbes based on evolutionary relationships. We
further improve this by using sequence alignment, which compares
the DNA or protein sequences of microbes to understand how simi-
lar they are at the genetic level. To compute microbe similarity, we
adopt the method from NinimHMDA [43], which integrates taxo-
nomic hierarchy and sequence similarity for microbes. For diseases,
we rely on the Medical Subject Headings (MeSH), a hierarchical
system that classifies diseases based on shared symptoms and eti-
ologies. Diseases within the same MeSH categories often exhibit
similar clinical traits. To enhance this representation, we apply
Gene Ontology (GO) term similarity, which compares the molecu-
lar functions of genes associated with each disease. We follow the
approach of Wang et al. [44], which measures Gene Ontology (GO)
semantic similarity. This combination allows the model to capture
both clinical and biological aspects of disease similarity.

After applying these similarity methods to the microbe (Hys)
and disease (Hpy) features, we construct a microbe similarity matrix
Sy € 0, 1MIXIMI and a disease similarity matrix Sy € RINIXINI,
which encode pairwise similarities derived from taxonomic and
hierarchical classifications. These matrices are subsequently trans-
formed into low-dimensional embeddings, Zy; € RIMIXF and Zy €

RINIXF ysing fully connected networks (FCNs).

C.Multi-modal Contrastive Learning

Representations of drugs, microbes, and diseases learned from
the heterogeneous graph capture topological triplet relationships
among them. Furthermore, domain knowledge-based embeddings
offer complementary insights into chemical properties, hierarchical
classifications, and biomedical semantics. Combining these comple-
mentary representations ensures a more holistic embedding space
where both interaction-driven and knowledge-driven similarities
are effectively preserved.

However, since heterogeneous graph embeddings and structural
encodings originate from fundamentally different modalities, their
latent spaces may become misaligned. To mitigate this discrepancy,
we introduce CL to refine and align embeddings derived from both
sources. This strategy enhances the model’s capacity to capture
meaningful relationships by ensuring that representations of se-
mantically similar entities are drawn closer in the embedding space,
while dissimilar ones are pushed apart.

Let Zp € RIPIXF 7\ e RIMIXF and Zy € RIVIXF denote the
biomedical encodings produced by the BioEncoder for all drugs, mi-
crobes, and diseases, respectively. For a given triplet tr = (d;, mj, n;),
we first gather the embeddings of the corresponding entity and
concatenate them:

Z07) = [ Zpldi] || Zulmi] || Zulmi] | Z{7) e RISPSF. (g)

Concretely, let Zp;, € RISIX3F and ZHeTAN € RISIXF denote the
embeddings produced by the BioEncoder and HeTAN encoder, re-
spectively, for all |S| triplets.
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We first define similarity between triplet as a direct cosine-
similarity

. T
_ Zgio Zystan )
1ZsiollF |1 Zretan|lF

sim(Zgjo, Z]—_rIeTAN) =

The goal of our contrastive learning framework is to align em-
beddings from the two modalities, HeTAN and BioEncoder, so that
semantically equivalent triplets are close in the shared embedding
space, while unrelated triplets are far apart.

For each triplet tr = (d;, m;, n;) consisting of a drug, microbe, and
disease, we treat the embeddings generated by the two modalities,

Z]gitg) from BioEncoder and ZP(IterT)AN from the HeTAN encoder, as
a positive pair. The objective is to maximize the cosine similarity
between these two embeddings, encouraging both modalities to
produce consistent semantic representations for the same triplet.
To generate negative examples, we adopt a corruption-based
strategy. For each positive triplet (d;, m;, n;), we produce g cor-
rupted triplets by randomly replacing one or more entities (drug,
microbe, or disease) with a different entity from the corresponding
set, ensuring that the resulting triplet is absent from the known
dataset. This approach produces biologically plausible yet incorrect
triplets that force the model to learn discriminative embeddings.
We employ a cosine similarity-based InfoNCE contrastive loss

(tr) (tr)
ZHeTAN’ ZBio

atives (Z]gijg), the contrastive loss is defined as:

function. For each positive pair ( ) and its ¢ hard neg-

T
exp(szm(ZHeT ANy Zgio,,))
7 ,
Z exp(sim(Z;;eTANn, Zgio, ))
=

®)

-Econtra ==

D. Model training

Once the embeddings for the drug, microbe, and disease are
obtained, they are concatenated and passed through a Multilayer
Perceptron (MLP) to estimate the probability of association. The
MLP serves as a scoring function that evaluates the likelihood
of interaction among the triplet entities. Formally, the predicted
probability f is given by:

P =MLP(zg || zm || zn) )

where || denotes the concatenation operator. A higher value of p
(closer to 1) indicates a strong potential association among the drug,
microbe, and disease, whereas a lower value (closer to 0) suggests
a weak or absent interaction. This scoring mechanism constitutes
the decoder component of our model, evaluating and predicting
potential drug-microbe-disease associations based on the learned
embeddings.

We train our entire encoder-decoder architecture as a binary
classification problem by minimizing a binary cross-entropy loss
function specified as follows:

N
Lup == ) Yilog ¥, +(1- Y log(1-Y)) (10)

i=1
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where N is the total number of triplets, Y; is the actual label indi-
cating the presence or absence of an interaction for the triplet, and
Yi/ is the predicted score for the triplet.

Finally, we jointly train our model with a weighted sum of the
supervised loss and contrastive loss as follows:

L = aLlsyp + (1-a) Leontras (11)

where « balances the supervised prediction against the alignment
of the BioEncoder and HeTAN embeddings.

4 Experiment

To evaluate the performance of our MCL-DMD model, we conduct
experiments involving negative sampling and randomly splitting
the dataset into training and testing subsets. Model effectiveness
is assessed using several evaluation metrics, including Recall, Pre-
cision, F1-score, AUROC, and the widely adopted top-n metrics,
Hit@n and NDCG@n. This section details our experimental setup,
baseline comparisons, and result analysis.

4.1 Experimental Setup

Evaluation protocols. We evaluate MCL-DMD using the dataset
described in Section 3.1, employing a stratified 80% training and
20% testing split. To ensure robustness, this process is repeated
ten times with different random seeds, and the average results are
reported. The model is implemented using PyTorch and PyTorch
Geometric, and optimized with the Adam optimizer. The objective
function uses contrastive loss. Hyperparameters are selected via
grid search over learning rates le-2, 5e-3, le-3, 5e-4, dropout rates
0.2, 0.4, 0.6, and hidden dimensions 16, 32, 64, with weight decay
fixed at 5e-4 and batch size set to 32. The model is trained for up
to 100 epochs, with early stopping applied if validation loss does
not improve for 200 consecutive epochs. These parameter values
were chosen as they demonstrated a good balance between model
performance and computational efficiency. The model does not take
a long time to run and shows promising accuracy results, which
indicates that the chosen hyperparameters contribute to an efficient
and effective DMD association prediction process.
Implementation details. We assess the performance of MCL-DMD
through a diverse set of metrics encompassing accuracy, precision,
F1-score, and AUROC. In addition, to assess the model’s effective-
ness in identifying meaningful associations, we adopt two widely
used top-n evaluation metrics: Hit@N and normalized discounted
cumulative gain (NDCG@N) [46, 47]. For each test triplet, we gen-
erate an unobserved triplet as negative samples and rank the test
triplet among them based on the predicted scores. Hit@N evaluates
whether the true triplet appears within the top-n ranked list, while
NDCG@n is a position-aware metric that assigns larger weights to
higher positions.

4.2 Baselines

To evaluate the effectiveness of our proposed model, we conduct
a comprehensive, comparative analysis against a diverse set of
baseline methods. These baselines are categorized as follows:

o Tensor Decomposition Methods: Canonical Polyadic (CP)
and Tucker decomposition are widely adopted tensor factor-
ization techniques that have been applied in biomedical data
analysis [7]. These methods rely on multilinear assumptions
to infer missing associations from high-dimensional tensors.
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o Attention-based Methods: Transformer-based models, which
employ self-attention mechanisms, are used to capture com-
plex interactions among drugs, microbes, and diseases. Trans-
formers have demonstrated strong performance in sequence
modeling and representation learning across multiple do-
mains.

e Graph Neural Networks (GNN5s): We include the Graph
Isomorphism Network (GIN) [14], a GNN architecture that ef-
fectively aggregates and updates node representations while
maintaining permutation invariance. GIN is applied to the
heterogeneous graph to learn enriched node embeddings
that capture relational dependencies.

e NeurTN: The Neural Tensor Network (NeurTN) [27] inte-
grates tensor algebra with deep neural networks to model the
nonlinear relationships among drugs, microbes, and diseases
more effectively.

e CoSTCo: CoSTCo [48] is a CNN-based tensor completion
model that captures complex interactions within higher-
order tensors to predictsociations.

e MCHNN: MCHNN [12] improves the prediction of the asso-
ciation of DMD by employing a hypergraph neural network
combined with multi-view CL to extract robust and expres-
sive node features.

This comparative evaluation enables a rigorous assessment of
our multi-modal CL framework relative to a wide range of existing
state-of-the-art methods.

4.3 Comparison with Baselines

We conduct a comprehensive performance evaluation of MCL-DMD
against a diverse set of state-of-the-art baseline models. To assess
the classification performance, we report five core metrics: F1-score,
Precision, Recall, ROC-AUC, and AUPR, as summarized in Table 1.
We further evaluate each method’s ability to prioritize relevant
triplets using ranking metrics, including Hit@n and NDCG@n, as
shown in Figure 2.

Our proposed model, MCL-DMD consistently outperforms all base-
lines across every evaluation metric. It achieves an F1-score of
93.65%, outperforming the strongest baseline MCHNN (84.10%). On
precision and recall, MCL-DMD achieves 93.99% and 93.31%, respec-
tively, indicating strong balance between sensitivity and specificity.
The model also records the highest ROC-AUC (97.98%) and AUPR
(97.56%), demonstrating its superior discrimination capacity in dis-
tinguishing positive from negative associations even under class
imbalance.

The strength of MCL-DMD is further reflected in ranking-based
evaluations. It achieves a Hit@3 score of 99.00%, surpassing MCHNN
(95.58%) and CoSTCo (94.65%). Similarly, in terms of NDCG, MCL-
DMD attains 100.00% at NDCG@3, outperforming MCHNN (NDCG@3:
94.59%) and other baselines. These results underscore MCL-DMD’s
ability to effectively rank high-confidence triplets, making it par-
ticularly suitable for real-world prioritization tasks in biomedical
applications.

Traditional tensor decomposition methods, such as CP and Tucker,
perform poorly across all metrics, with F1-scores of 37.97% and
56.09%, respectively. These methods are limited by their assump-
tions of linearity and struggle with the sparsity and complexity of
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Table 1: Comparison of Different Methods for Predicting Drug-Microbe-Disease Interactions
Model F1-Score | Precision | ROC-AUC | Recall | AUPR
CP Decomposition 37.97 46.39 47.02 32.14 85.95
Tucker Decomposition 56.09 48.42 47.75 66.66 87.19
NeurTN 70.2 65.32 67.28 75.87 59.71
Transformer 79.59 78.00 78.17 81.25 78.05
CoSTCo 82.77 84.36 90.61 79.47 88.94
GNN 84.01 81.54 82.66 86.63 83.19
MCHNN 84.1 82.71 92.46 85.54 71.24
MCL-DMD 93.65 93.99 97.98 93.31 97.56
Hit, NDCG
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Figure 2: Evaluation of top-n performance for MCL-DMD and other baseline models in terms of
Hit@n and NDCG@n

biomedical association data. Even though they can model multi-
way interactions, their inability to capture nonlinear dependencies
and learn rich representations constrains their performance.

NeurTN, which integrates tensor operations with neural atten-
tion mechanisms, improves over traditional decompositions but
still trails significantly behind GNN-based models. Its relatively low
AUPR (59.71%) and F1 (70.2%) suggest that while attention helps
to some extent, it is insufficient to compensate for the lack of rich
structural encoding.

Transformer-based architectures leverage self-attention to model

complex dependencies, achieving moderate results (F1-score: 79.59%).

However, without explicit graph-based relational modeling, Trans-
formers underperform compared to GNN-based models, particu-
larly in structured domains like biomedical graphs.

Among graph neural network methods, GCN and MCHNN stand
out. GCN achieves an F1-score of 84.01% and AUPR of 83.19%, while
MCHNN slightly surpasses it with an F1 of 84.10%, ROC-AUC of
92.46%, and AUPR of 71.24%. These gains come from their ability to
encode node relationships through message passing. MCHNN fur-
ther integrates pairwise similarity measures—e.g., for microbes and
diseases—which enhances biological realism and representation
quality. Meanwhile, CoSTCo, a multi-view collaborative learning

framework, also performs competitively (F1-score: 82.77%, AUPR:
90.94%) by learning joint embeddings across different relational
spaces. However, it lacks a contrastive mechanism to enforce se-
mantic alignment between modalities, which limits its overall gen-
eralization.

In contrast, MCL-DMD integrates the heterogeneous graph with
the knowledge of the biomedical domain, including molecular
graphs, microbial taxonomies and disease ontologies, into a unified
architecture. This comprehensive modeling is further enhanced by
multi-modal contrastive learning, which aligns graph-based and
domain-specific embeddings to reinforce semantic consistency and
improve discriminability. The consistent superiority of MCL-DMD
across all metrics demonstrates the value of combining heteroge-
neous graphs with domain knowledge and contrastive learning.
This makes MCL-DMD a promising solution for drug-microbe-disease
association prediction, offering both accuracy and interpretability
in real-world biomedical discovery.

4.4 Ablation Study

We perform some ablation studies to assess the individual contri-
butions of each key module in the MCL-DMD framework.
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Ablation Study on MCL-DMD
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Figure 3: Ablation study on MCL-DMD showing the impact of embedding size (left) and dropout ratio (right) on key evaluation

metrics.

Table 2: Ablation study results for selected MCL-DMD variants

Model F1-Score | Precision | ROC-AUC | Recall | AUPR
MCL-DMD w/o BE 44.70 39.37 59.40 57.65 58.41
MCL-DMD w/o HeTAN 81.67 85.79 87.81 84.34 85.79
MCL-DMD w/o CL 71.97 33.97 78.01 80.20 76.58
MCL-DMD 93.65 93.99 97.98 93.31 97.56

4.4.1 Impact of Different Components. To evaluate the impact of
different components, we examined three model variants by sys-
tematically removing specific modules and comparing their perfor-
mance:

e MCL-DMD without BioEncoder (w/o BE): This variant re-
moves the biomedical domain knowledge encoder, which is
responsible for capturing structured features from external
knowledge sources such as drug molecular graphs (SMILES),
microbe taxonomies, and disease ontologies (MeSH). The
model thus relies entirely on the heterogeneous graph en-
coder (HeTAN) to learn representations based on the struc-
tural topology of the drug-microbe-disease network.

e MCL-DMD without HeTAN (w/o HeTAN):In this configura-
tion, we eliminate the heterogeneous graph encoder HeTAN,
thereby removing any contribution from topological relation-
ships in the triplet interaction graph. The model is trained
solely on the features derived from the biomedical domain
knowledge encoder. This variant allows us to isolate the
predictive power of non-graph biological features — such as
molecular structure, taxonomy, and disease semantics.

e MCL-DMD without CL (w/o CL):In this setting, we retain
both the heterogeneous graph encoder and the biomedi-
cal domain knowledge encoder, but remove the contrastive
learning (CL) module that is responsible for aligning em-
beddings across modalities. Without CL, the model cannot
explicitly enforce consistency between the graph-based and
domain knowledge-based representations. This helps quan-
tify the effect of cross-modal alignment on the quality and
generalization of learned embeddings, as well as the overall
predictive performance.

The results of the ablation study, presented in Table 2, highlight
the significance of each module in the MCL-DMD framework. The vari-
ant w/o BE produces the weakest performance (F1-score: 44.70%),
highlighting the indispensable role of the biomedical domain knowl-
edge encoder in capturing complex drug-microbe-disease interac-
tions. Removing CL also results in a substantial drop in performance
(F1-score: 71.97%), validating its effectiveness in aligning modality-
specific embeddings. Interestingly, even w/o HeTAN, the model still
achieves a high performance (F1-score: 81.67%), with the highest
precision (85.79%) among all variants, indicating that biomedical
features alone offer substantial predictive capability. Nevertheless,
the full MCL-DMD model achieves the highest scores across most
metrics (F1-score: 84.59%, ROC-AUC: 93.38%, Recall: 87.52%, AUPR:
90.13%), demonstrating that the integration of heterogeneous graph
structures, biomedical descriptors, and CL provides complementary
strengths essential for accurate and robust triplet prediction.

4.4.2 Impact of Embedding Size. We evaluated the effect of vary-
ing the embedding dimensionality to understand how it influences
the model’s representational capacity. As shown in Figure 3(a), we
varied the embedding size from 2 to 128 and observed its impact on
performance metrics. The results reveal that performance generally
improves with increasing embedding size up to a certain threshold,
beyond which it stabilizes. For instance, F1-score increases from
84.59% (dim=8) to 86.28% (dim=64) and then flattens. Similar trends
are observed in AUROC and AUPR, which peak around embed-
ding sizes of 64 or 128. This suggests that moderate-dimensional
embeddings provide sufficient capacity for capturing complex bi-
ological relationships, while further increases yield diminishing
returns. Based on this, we adopt an embedding size of 64 as the
default configuration, balancing performance and computational
efficiency.
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4.4.3 Impact of Dropout Ratio. We also explore how regularization
through dropout affects generalization. Figure 3(b) shows model
performance when dropout is varied from 0.1 to 0.7. Interestingly,
performance fluctuates more noticeably across dropout values com-
pared to other settings. For instance, AUROC improves with increas-
ing dropout up to 0.6, peaking at 94.39%, and then slightly declines
at 0.7. This trend is mirrored in Recall and Precision, suggesting
that moderate dropout helps mitigate overfitting, especially when
training with limited labeled data. However, too much dropout (e.g.,
0.7) may result in underfitting, reducing the model’s ability to learn
complex associations. We therefore set dropout to 0.5 or 0.6 as the
default to achieve optimal generalization.

4.5 Generalization to Unseen Entities

To assess the robustness of our framework in realistic discovery
scenarios, we conduct experiments under cold-start settings, where
certain entities were completely excluded from training and only
introduced at test time. This setup evaluates the model’s ability to
generalize to previously unseen drugs, diseases, and microbes, as
well as to entirely new triplets.

We designed four evaluation scenarios:

e Cold Drug: All associations involving a held-out set of drugs
are removed during training. At test time, the model must
predict their interactions with microbes and diseases using
only their biomedical representations.

e Cold Disease: A subset of diseases is excluded during train-
ing, and their associations with drugs and microbes are eval-
uated at test time.

e Cold Microbe: The model is tasked with predicting interac-
tions for microbes absent during training.

e Cold Triple: Entire drug-microbe-disease triplets are held
out, requiring the model to infer associations without ever
seeing the full combination during training.

Table 3 summarizes the performance across these settings.

Table 3: Performance on unseen entities across different cold-
start settings.

Scenario AUC AUPR F1Score Recall Precision
Cold Drug 79.51 78.94 70.06 65.28 75.55
Cold Disease 78.94 82.30 67.17 57.99 79.80
Cold Microbe  64.10 68.30 52.06 45.73 70.67
Cold Triple 59.65 62.47 50.80 40.41 68.40

The results reveal several important trends. The model demon-
strates strong generalization in the Cold Drug and Disease settings,
achieving AUC values of 79.51 and 78.94, respectively. This indi-
cates that the biomedical encoders provide sufficiently rich rep-
resentations to enable accurate predictions for previously unseen
drugs and diseases. Performance in the Cold Microbe and espe-
cially the Cold Triple settings is comparatively lower, suggesting
that microbe embeddings derived from one-hot identifiers limit the
model’s ability to capture transferable biological semantics. Despite
this, the results remain substantially above random, highlighting
the model’s capacity to generalize beyond training distributions.
These findings underscore both the promise and the limitations of
cold-start generalization in biomedical association prediction.

N. Say et al.

5 Conclusion

We introduce MCL-DMD, a multimodal CL framework for the pre-
diction of drug-microbe-disease association that integrates het-
erogeneous graph structures with biomedical domain descriptors.
By aligning representations across modalities, MCL-DMD effectively
captures complex biological interactions better than existing meth-
ods. Extensive experiments demonstrate that MCL-DMD consistently
outperforms state-of-the-art baselines in both classification and
ranking tasks. Ablation studies further validate the complemen-
tary contributions of its core components—heterogeneous graph
encoding, domain-specific knowledge integration, and CL. This
work underscores the value of multi-modal fusion in advancing
robust biomedical triplet prediction and paves the way for future
research in this area. As next steps, we plan to extend MCL-DMD
to incorporate temporal dynamics and evaluate its applicability
to other triplet prediction tasks, such as drug—gene-disease and
circRNA-miRNA-disease associations. Additionally, we aim to de-
velop an open-access implementation of the framework to facilitate
broader adoption in drug discovery and personalized medicine.
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